Skip to main content
Log in

Water wave frequency discrimination in the clawed frog,Xenopus laevis

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    The ability of adultXenopus laevis to discriminate water waves of different frequencies was tested by go/no-go conditioning.

  2. 2.

    In the range 5–30 Hz,Xenopus can distinguish waves on the basis of frequency. In this range, the relative discrimination limen DL had an optimum of 0.04 at 14 Hz and increased to 0.15 one octave above and below (Fig. 3). When the relative difficulty of the conditioning paradigm is taken into account, this discrimination acuity is in the range of vertebrate auditory discrimination.

  3. 3.

    Frequency discrimination was not limited to surface waves, but was also performed when the frog was sitting on the bottom of the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

S+ :

stimulus with response reward

S−:

stimulus with response punishment

f :

frequency difference of the two waves being tested

DL :

relative discrimination limen †f/f

References

  • Bachem A (1964) Time factors in relative and absolute pitch discrimination. J Acoust Soc Am 26:751–753

    Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fishAplocheilus lineatus. J Comp Physiol 140:163–172

    Google Scholar 

  • Bleckmann H, Barth FG (1984) Sensory ecology of a semiaquatic spider (Dolomedes triton). II. The release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14:303–312

    Google Scholar 

  • Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fishAplocheilus lineatus (Cyprinodontidae). J Comp Physiol 145:331–339

    Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnowAplocheilus lineatus. Naturwissenschaften 67:624

    Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fishAplocheilus lineatus — a prerequisite for prey localization? J Comp Physiol 143:485–490

    Google Scholar 

  • Böttger K (1974) Zur Biologie vonSphaerodema grassei ghesquierei. Studien an zentralafrikanischen Belostomiden (Heteroptera, Insecta) I. Arch Hydrobiol 74:100–122

    Google Scholar 

  • Burdick CK (1979) The effect of behavioral paradigm on auditory discrimination learning: a literature review. J Auditory Res 19:59–82

    Google Scholar 

  • Burgess JW, Shaw E (1981) Effects of acoustico-lateralis denervation in a facultative schooling fish: A nearest-neighbor matrix analysis. Behav Neural Biol 33:488–497

    Google Scholar 

  • Dijkgraaf S (1947) Über die Reizung des Ferntastsinns bei Fischen und Amphibien. Experientia 3:206–208

    Google Scholar 

  • Dijkgraaf S (1967) Biological significance of the lateral line organs. In: Cahn P (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 83–95

    Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH, Ouellet H (eds) Acoustic communication in birds, vol 1. Academic Press, New York, pp 95–130

    Google Scholar 

  • Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system. J Comp Physiol 148:535–545

    Google Scholar 

  • Elepfandt A (1984a) The role of ventral lateral line organs for water wave localization in the clawed toad (Xenopus laevis). J Comp Physiol A 154:773–780

    Google Scholar 

  • Elepfandt A (1984b) Operante Wellenformkonditionierung beim Krallenfrosch (Xenopus laevis Daudin). Verh Dtsch Zool Ges. 77:227

    Google Scholar 

  • Fay RR (1974) Auditory frequency discrimination in vertebrates. J Acoust Soc Am 56:206–209

    Google Scholar 

  • Goff GD (1967) Differential discrimination of frequency of cutaneous mechanical vibration. J Exp Psychol 74:294–299

    Google Scholar 

  • Gulick WL (1971) Hearing: Physiology and psychophysics. Oxford University Press, New York

    Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psychol 96:926–944

    Google Scholar 

  • Hodos W, Campbell CBS (1969) Scala naturae: Why there is no theory in comparative psychology. Psychol Rev 76:337–350

    Google Scholar 

  • Hoin-Radkovsky I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fishPantodon buchholzi Pantodontidae. Anim Behav 32:840–851

    Google Scholar 

  • Kramer G (1933) Untersuchungen über die Sinnesleistungen und das Orientierungsverhalten vonXenopus laevis DAUD. Zool Jb Physiol 52:629–676

    Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1978) Frequency response of the lateral-line organ ofXenopus laevis. Pflügers Arch 375:167–175

    Google Scholar 

  • Lang HH (1980) Surface wave discrimination between prey and nonprey by the back swimmerNotonecta glauca (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246

    Google Scholar 

  • Quine DB, Konishi M (1974) Absolute frequency discrimination in the barn owl. J Comp Physiol 93:347–360

    Google Scholar 

  • Rothenberg M, Verrillo RT, Zahorian SA, Brachman ML, Bolanowski SJ Jr (1977) Vibrotactile frequency for encoding a speech parameter. J Acoust Soc Am 62:1003–1012

    Google Scholar 

  • Rudolph P (1967) Zum Ortungsverfahren vonGyrinus substriatus Steph. (Taumelkäfer). Z Vergl Physiol 56:341–375

    Google Scholar 

  • Schwartz E (1965) Bau und Funktion der Seitenlinie des Streifenhechtlings (Aplocheilus lineatus Cuv. u. Val.). Z Vergl Physiol 50:55–87

    Google Scholar 

  • Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z Vergl Physiol 74:64–80

    Google Scholar 

  • Shelton PMJ (1970) The lateral line system at metamorphosis inXenopus laevis (Daudin). J Embryol Exp Morphol 24:511–524

    Google Scholar 

  • Sommerfeld A (1978) Vorlesungen über theoretische Physik II. Mechanik der deformierbaren Medien, Verlag Harri Deutsch, Thun

    Google Scholar 

  • Thorpe WH (1963) Learning and instinct in animals. 2nd edn. Methuen, London

    Google Scholar 

  • Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Statist 16:117–186

    Google Scholar 

  • Weber E (1972) Grundriss der biologischen Statistik, 7. Aufl. VEB Gustav Fischer, Jena

    Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fishAnoptichthys jordani (Characidae). J Comp Physiol 143:375–381

    Google Scholar 

  • Wiedemer L (1984) Neurophysiologische Untersuchungen zur Richtcharakteristik wellensensitiver Sinnesorgane des KrallenfroschesXenopus laevis unter quasinatürlichen Reizbedingungen. Staatsexamensarbeit, Konstanz

    Google Scholar 

  • Wilcox RS (1972) Communication by surface waves. Mating behaviour of a water strider (Gerridae). J Comp Physiol 80:255–266

    Google Scholar 

  • Wilcox RS (1979) Sex discrimination inGerris remigis: Role of a surface wave signal. Science 206:1325–1327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elepfandt, A., Seiler, B. & Aicher, B. Water wave frequency discrimination in the clawed frog,Xenopus laevis . J. Comp. Physiol. 157, 255–261 (1985). https://doi.org/10.1007/BF01350032

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01350032

Keywords

Navigation