Skip to main content
Log in

Genetic studies in marine fishes

II. A protein electrophoretic analysis of population structure in the red drumSciaenops ocellatus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Nine polymorphic loci were found among 42 presumptive protein-coding gene loci surveyed among 474 red drum (Sciaenops ocellatus) sampled in 1987 from 13 nearshore and 1 offshore localities from the Atlantic coast of the southeastern USA and the northern Gulf of Mexico. The mean number of alleles over the polymorphic loci was 3.8, and the average heterozygosity over all loci examined\(\left( {\bar H} \right)\) was estimated as 0.047. These data indicate that red drum have “normal” levels of genetic variability. Wright'sF1 ST values (the standardized variance of allele frequencies between samples) over all polymorphic loci ranged from 0.009 to 0.027 (meanF1 ST =0.019), and estimates of the effective number of migrants (N e m) per generation using Wright's island model ranged from 9.0 to 27.5. High levels of gene flow among the red drum samples were also indicated by Slatkin's qualitative analysis using conditional average allele frequencies. Nei's estimates of genetic distance between pairs of samples ranged from 0.000 to 0.009, indicating a high degree of nuclear gene similarity among all samples. Highly significant heterogeneity in allele frequencies at the locus for adenosine deaminase was detected between red drum sampled from the Atlantic and those sampled from the Gulf and among red drum sampled from the Gulf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adkins, G., Tarver, J., Bowman, P., Savoie, B. (1979). A study of commercial finfish in coastal Louisiana. Tech. Bul. La Dep. Wildl. Fish., Baton Rouge July: 1–92

    Google Scholar 

  • Allendorf, F. W., Phelps, S. R. (1981). Use of allelic frequencies to describe population structure. Can. J. Fish. aquat. Sciences 38: 1507–1514

    Google Scholar 

  • Allendorf, F. W., Ryman, N. (1987). Genetic management of hatchery stocks. In: Ryman, N., Utter, F. (eds.) Population genetics and fishery management. University of Washington Press, Seattle, Washington, p. 141–159

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. A. Rev. Ecol. Syst. 18: 489–522

    Google Scholar 

  • Beckwitt, R. (1983). Genetic structure ofGenyonemus lineatus, Seriphus politus (Sciaenidae) andParalabrax clathratus (Serranidae) in southern California. Copeia 1983: 691–696

    Google Scholar 

  • Bohlmeyer, D. A. (1989). A protein electrophoretic analysis of population structure in the red drum (Sciaenops ocellatus). MSc. thesis. Texas A&M University, College Station, Texas

    Google Scholar 

  • Bohlmeyer, D. A., Gold, J. R. (1990). Extensive polymorphism at adenosine deaminase in the marine fishSciaenops ocellatus. Anim. Genet. 21: 211–213

    Google Scholar 

  • Buth, D. G. (1984). Allozymes of the cyprinid fishes. In: Evolutionary genetics of fishes, B. J. Turner (ed). Plenum Press, New York, p. 561–590

    Google Scholar 

  • Chakraborty, R,. Leimar, O. (1987). Genetic variation within a subdivided population. In: Ryman, N., Utter, F. (eds.) Population genetics and fishery management. University of Washington Press, Seattle, Washington, p. 89–120

    Google Scholar 

  • Clayton, J. W., Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Bd Can. 29: 1169–1172

    Google Scholar 

  • Crowle, A. J., Kline L. J. (1977). An improved stain for immunodiffusion tests. J. immunol. Meth. 17: 379–381

    Google Scholar 

  • Dailey, J., Matlock, G. C. (1987). Fish stocking in Texas bays: 1975–1986. Mgmt Data Ser., Tex. Pks Wildl. Dep., cstl Fish. Brch 134: 1–23

    Google Scholar 

  • Davis, B. J. (1964). Disc electrophoresis-II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121: 404–427

    Google Scholar 

  • DeSalle, R., Templeton, A., Mori, I., Pletscher, S., Johnston, J. S. (1987). Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations ofDrosophila mercatorum. Genetics, Austin, Tex. 116: 215–223

    Google Scholar 

  • Ferris, S. D., Whitt, G. S. (1978). Genetic and molecular analysis of nonrandom dimer assembly of the creatine kinase isozymes of fishes. Biochem. Genet. 16: 811–829

    Google Scholar 

  • Gyllensten, U. (1985). The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species. J. Fish Biol. 26: 691–699

    Google Scholar 

  • Harris, H., Hopkinson, D. A. (1976). Handbook of enzyme electrophoresis in human genetics. American Elsevier Publishing Co., Inc., New York

    Google Scholar 

  • Holt, J., Johnson, A. G., Arnold, C. R., Fable, W. A., Williams, T. D. (1981). Description of eggs and larvae of laboratory reared red drum,Sciaenops ocellata. Copeia 1981: 751–757

    Google Scholar 

  • Larson, A., Wake, D. B., Yanev, K. P. (1984). Measuring gene flow among populations having high levels of genetic fragmentation. Genetics, Austin, Tex. 106: 293–308

    Google Scholar 

  • Lyczkowski-Schultz, J., Steen, J. P., Jr., Comyns, B. H. (1988). Early life history of red drum (Sciaenops ocellatus) in the northcentral Gulf of Mexico. Mississippi-Alabama Sea Grant Consortium and Gulf Coast Research Laboratory, Ocean Springs, Mississippi (Project No. R/LR-12)

    Google Scholar 

  • Matlock, G. C. (1984). A basis for the development of a management plan for red drum in Texas. Ph. D. dissertation. Texas A&M University, College Station, Texas

    Google Scholar 

  • Matlock, G. C. (1987a). Maximum total length and age of red drum off Texas. NE Gulf Sci. 9: 49–52

    Google Scholar 

  • Matlock, G. C. (1987b). The life history of the red drum. In: Chamberlain, G. W., Miget, R. J., Haby, M. G. (eds.) Manual on red drum aquaculture. Preliminary draft of invited papers presented at the Production Short-Course of the 1987 Red Drum Aquaculture Conference on 22–24 June, 1987 in Corpus Christi, Texas. Texas Agricultural Extension Service, Corpus Christi, Texas, and Sea Grant College Program, College Station, Texas, p. 1–47

    Google Scholar 

  • Matlock, G. C., Weaver, J. E. (1979). Fish tagging in Texas bays during November 1975–September 1976. Mgmt Data Ser., Tex. Pks Wildl. Dep., cstl Fish. Brch 1: 1–136

    Google Scholar 

  • McIlwain, T., McEachron, L., Murphy, M. D., Nelson, W. R., Shepard, J., Van Hoose, M., Condrey, R., Bane, N., Becker, R.E. (1986). State-federal cooperative program for red drum research in the Gulf of Mexico. Gulf States Marine Fisheries Commission, Ocean Springs, Mississippi

    Google Scholar 

  • Mercer, L. (1984). A biological and fisheries profile of red drum,Sciaenops ocellatus. Spec. scient. Rep. N Carol. Dep. nat Resour. Community Dev., Div. mar. Fish. 41: 1–89

    Google Scholar 

  • Morizot, D. C., Siciliano, M. J. (1984). Gene mapping in fishes and other vertebrates. In: Turner, B. J. (ed.) Evolutionary genetics of fishes. Plenum Press, New York, p. 173–234

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590

    Google Scholar 

  • Nei, M., Stephens J. C., Saitou, N. (1985). Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol. Biol. Evolut. 2: 66–85

    Google Scholar 

  • Nelson, K., Soulé, M. (1987). Genetical conservation of exploited fishes. In: Ryman, N., Utter, F. (eds.) Population genetics and fishery management. University of Washington Press, Seattle, Washington, p. 345–368

    Google Scholar 

  • Nevo, E. (1978). Genetic variation in natural populations: patterns and theory. Theor. Popul. Biol. 13: 121–177

    Google Scholar 

  • Nichols, S. (1988). A preliminary estimate of the size of the red drum spawning stock using mark/recapture. Gulf of Mexico Fishery Management Council, Tampa, Florida (Report)

    Google Scholar 

  • Ornstein, L. (1964). Disc electrophoresis-I. Background and theory. Ann. N.Y. Acad. Sci. 121: 321–349

    Google Scholar 

  • Osburn, H. R., Matlock, G. C., Green, A. W. (1982). Red drum (Sciaenops ocellatus) movement in Texas bays. Contr. mar. Sci. Univ. Tex. 25: 85–97

    Google Scholar 

  • Overstreet, R. M. (1983). Aspects of the biology of the red drum,Sciaenops ocellatus, in Mississippi. Gulf Res. Rep. (Suppl.) 1: 45–68

    Google Scholar 

  • Ramsey, P. R., Wakeman, J. M. (1987). Population structure ofSciaenops ocellatus andCynoscion nebulosus (Pisces: Sciaenidae): biochemical variation, genetic subdivision and dispersal. Copeia 1987: 682–695

    Google Scholar 

  • Reagan, R. E. (1985). Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico)—red drum. U.S. Fish Wildl. Serv. biol. Rep. 82(11.36): 1–16 (U. S. Army Corps of Engineers, Ref. No. TR EL-82-4)

    Google Scholar 

  • Ridgway, G. J., Sherburn, S. W., Lewis, R. D. (1970). Polymorphism in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147–151

    Google Scholar 

  • Rohlf, F. J. (1983). BIOM-PC: a package of statistical programs to accompany the text BIOMETRY. W. H. Freeman & Co., San Francisco, California

    Google Scholar 

  • Ross, J. L., Stevens, T. M., McKenna, S. A., Burns, B. L. (1987). Red drum,Sciaenops ocellatus, tagging in North Carolina waters. Rep. N. Carol. Dep. nat. Resour. Community Dev., Div. mar. Fish.: 1–44

  • Selander, R. K., Smith, R. H., Yang, S. Y., Johnson, W. E., Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud. Genet., Austin, Texas 6: 49–90. (Univ. Texas Publ. No. 7103)

    Google Scholar 

  • Siciliano, M. J., Shaw, C. R. (1976). Starch gel electrophoresis of enzymes. In: Smith, I. (ed.) Chromatographic and electrophoretic techniques. Vol. II. The Yearbook Medical Publishers, Chicago, Illinois, p. 185–209

    Google Scholar 

  • Slatkin, M. (1981). Estimating levels of gene flow in natural populations. Genetics, Austin, Tex. 95: 323–335

    Google Scholar 

  • Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution 39: 53–65

    Google Scholar 

  • Smith, P. J., Fujio, Y. (1982). Genetic variation in marine teleosts: high variability in habitat specialists and low variability in habitat generalists. Mar. Biol. 69: 7–20

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1969). Biometry. The principles and practice of statistics in biological research. W. H. Freeman & Co., San Francisco, California

    Google Scholar 

  • Spieth, P. T. (1974). Gene flow and genetic differentiation. Genetics, Austin, Tex. 78: 961–965

    Google Scholar 

  • Swingle, W., Leary, T., Davis, C., Blomo, V., Tatum, W., Murphy, M., Taylor, R., Adkins, G., McIlwain, T., Matlock, G. (1984). Fishery profile of red drum. Gulf of Mexico Fishery Management Council and Gulf States Marine Fisheries Commission, Tampa, Florida

    Google Scholar 

  • Swofford, D. L., Selander, R. B. (1981). BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283

    Google Scholar 

  • Utter, F. M., Hodgins, H., Allendorf, F. W. (1974). Biochemical genetic studies of fishes: potentialities and limitations. In: Malins, D. C., Sargent, J. R. (eds.) Biochemical and biophysical perspectives in marine biology. Vol. I. Academic Press, New York, p. 213–238

    Google Scholar 

  • Waples, R. S., (1987). A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41: 385–400

    Google Scholar 

  • Whitt, G. S. (1987). Species differences in isozyme tissue patterns: their utility for systematic and evolutionary analyses. In: Markert, C. L. (ed.) Isozymes: current topics in biological and medical research. Vol. XV. Alan R. Liss Inc., New York, p. 1–26

    Google Scholar 

  • Wilder, W. R., Fisher, F. M. (1986). Electrophoretic identification of subpopulations of juvenile red drum. A. Mtg Am. Fish. Soc. (Providence, R. I.) (Abstr.) 116: p. 59

    Google Scholar 

  • Winans, G. A. (1980). Geographic variation in the milkfishChanos chanos. I. Biochemical evidence. Evolution 34: 558–574

    Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, Princeton 28: 114–138

    Google Scholar 

  • Wright, S. (1965). The interpretation of population structure byF-statistics with special regard to systems of mating. Evolution 9: 395–420

    Google Scholar 

  • Wright, S. (1969). Evolution and the genetics of populations. Vol. II. The theory of gene frequencies. University of Chicago Press, Chicago, Illinois

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohlmeyer, D.A., Gold, J.R. Genetic studies in marine fishes. Mar. Biol. 108, 197–206 (1991). https://doi.org/10.1007/BF01344334

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344334

Keywords

Navigation