Skip to main content
Log in

Primary oxidation of organic matter in the soil

I. The form of respiration curves with glucose as the substrate

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

The course of respiration rate during glucose decomposition in a soil sample was studied. The whole process of oxidation (mineralization) is divided into two principal parts: the primary oxidation which occurs while the substrate is still present and the secondary oxidation after the disappearance of the substrate. The primary oxidation brought about by two different components: the oxidative component represents the sum of enzyme activity present originally in the soil sample, and the assimilative component is built up during the process by synthesis of microbial enzymes. The size of the oxidative component is correlated with the biological potency of soil. Sometimes, an intermediary stage can be observed at the beginning of the secondary oxidation. A method is given for enumeration of the proportions of the two components involved in primary oxidation. The biochemical and pedological meaning of these data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birch, H. F., The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil10, 9–31 (1958).

    Google Scholar 

  2. Broadbent, F. E., Nitrogen release and carbon loss from soil organic matter during decomposition of added plant residues. Soil Sci. Soc. Am. Proc.12, 246–249 (1947).

    Google Scholar 

  3. Chase, F. E. and Gray, P. H. H., Use of the Warburg respirometer to study microbial activity in soil. Nature171, 481 (1953).

    Google Scholar 

  4. Chase, F. E. and Gray, P. H. H., Application of the Warburg respirometer in studying respiratory activity in soil. Can. J. Microbiol.3, 335–349 (1957).

    Google Scholar 

  5. Corbet, S. A., Studies on tropical soil microbiology: I. The evolution of carbon dioxide from the soil and the bacterial growth curve. Soil Sci.37, 109–115 (1934).

    Google Scholar 

  6. Drobník, J., Štěpení škrobu enzymatickým komplexem půd. Českoslov. Biol.4, 19–29 (1955).

    Google Scholar 

  7. Drobník, J., Štěpení asparaginu enzymatickým komplexem půd. Českoslov. Mikrobiol.1, 47 (1956).

    Google Scholar 

  8. Drobník, J., Biological transformations of organic substances in the soil, (in Russian with an English summary). Pedology (USSR)1957 (12), 62–71.

  9. Drobník, J., A respirometric study of glucose metabolism in soil samples. Folia Biol. (Prague)4, 137–146 (1958).

    Google Scholar 

  10. Drobník, J. and Seifert, J., Vztah enzymatické inverse sacharosy v půdě k některým půdně mikrobiologickým testům. Českoslov. Biol.4, 30–35 (1955).

    Google Scholar 

  11. Ellinger, G. and Quastel, J. H., Preliminary experiments in the study of the respiratory activity of microorganisms suspended in thin films of fluid adhering to solid surfaces. Biochem. J.42, 214–218 (1948).

    Google Scholar 

  12. Frank, H. and Kirberger, E., Eine kolorimetrische Methode zur Bestimmung der „wahren Glucose“ und Galactose in 0,05 ml Blut. Biochem. Z.320, 359–367 (1950).

    PubMed  Google Scholar 

  13. Gray, P. H. H. and Taylor, C. B., The aerobic decomposition of glucose in podsol soils. Can. J. Research C17, 109–124 (1939).

    Google Scholar 

  14. Gray, P. H. H. and Taylor, C. B., Microbiological studies of Appalachian podsol soils. IV. The decomposition of glucose in soil previously treated with amendments. Can. J. Research C17, 147–153 (1939).

    Google Scholar 

  15. Greenwood, D. J. and Lees, H., Studies on the decomposition of amino acids in soils. I. A preliminary survey of techniques. Plant and Soil7, 253–267 (1956).

    Google Scholar 

  16. Hallam, M. J. and Bartholomew, W. V., Influence of rate of plant residue addition in accelerating the decomposition of soil organic matter. Soil Sci. Soc. Am. Proc.17, 365–368 (1953).

    Google Scholar 

  17. Hofmann, E., Enzymreaktionen und ihre Bedeutung für die Bestimmung der Bodenfruchtbarkeit. Z. Pflanzenernähr. Düng. u. Bodenk.56, 68–72 (1952).

    Google Scholar 

  18. Katznelson, H. and Stevenson, I. L., Observations on the metabolic activity of the soil microflora. Can. J. Microbiol.2, 611–622 (1956).

    PubMed  Google Scholar 

  19. Koepf, H., Untersuchungen über die biologische Aktivität des Bodens. Teil I. Atmungskurven des Bodens und Fermentaktivität unter dem Einfluss von Düngung und Pflanzenwachstum. Z. Acker- u. Pflanzenb.98, 289–312 (1954).

    Google Scholar 

  20. Lees, H., The soil percolation technique. Plant and Soil1, 221 (1949).

    Google Scholar 

  21. Lees, H. and Quastel, J. H., A new technique for the study of soil sterilization. Chem. & Ind. London26, 238–239 (1944).

    Google Scholar 

  22. Macura, J. and Málek, I., Continnous-flow method for the study of microbiological processes in soil sample. Nature182, 1796–1797 (1958).

    PubMed  Google Scholar 

  23. Najmr, S., Humus ve výrobně dúležitých půdních typech. St. zem. nakl. Praha (1957).

  24. Rovira, A. D., Use of the Warburg apparatus in soil metabolism studies. Nature172, 29 (1953).

    Google Scholar 

  25. Rovira, A. D., Plant root excretions in relation to the rhizosphere effect. III. The effect of root exudate on the numbers and activity of micro-organisms in soil. Plant and Soil7, 209–217 (1956).

    Google Scholar 

  26. Stevenson, I. L. and Katznelson, H., The oxydation of ethanol and acetate in soils. Can. J. Microbiol.4, 73–79 (1958).

    PubMed  Google Scholar 

  27. Wheeler, B. E. J. and Yemm, E. W., The conversion of amino acids in soils. I. Amino-acid breakdown and nitrification in cultivated and natural soil. Plant and Soil10, 49–77 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobník, J. Primary oxidation of organic matter in the soil. Plant Soil 12, 199–211 (1960). https://doi.org/10.1007/BF01343649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01343649

Keywords

Navigation