Skip to main content
Log in

Global invariants and equilibrium states in lattice gases

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is now well known that, in addition to the physical conserved quantities, lattice gases also have other unphysical ones related to the discretization of their phase space. From an abstract point of view a lattice gas can be considered like a full discrete Markov processL and these spurious conserved quantities yield the existence of a nonspatially homogeneous equilibrium state forL k. We show that a particular set of these conserved quantities is of special interest: Its elements will be called regular. These regular invariants are simply built from the local ones and their projection on each node is always a locally conserved quantity. Moreover, for most models they are one-to-one related to the Gibbs states ofL k which remain factorized. It turns out that all the classical known spurious invariants are regular and one can exhibit simple conditions to build models with only regular invariants. For the latter it is then justified to determine the transport coefficients of the locally conserved densities with the Green-Kubo procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505–1508 (1986).

    Google Scholar 

  2. J. A. McLennan,Introduction to Non-Equilibrium Statistical Mechanics (Prentice-Hall, 1989).

  3. M. H. Ernst, Linear response theory for cellular automata fluids, inFundamental Problems in Statistical Mechanics VII (North-Holland, Amsterdam, 1990), pp. 321–355.

    Google Scholar 

  4. J. Hardy and Y. Pomeau, Thermodynamics and hydrodynamics for a modeled fluid,J. Math. Phys. 13:1042–1051 (1972).

    Google Scholar 

  5. J. Hardy, Y. Pomeau, and O. De Pazzis, Time evolution of a two dimensional model system. I Invariant states and time correlation functions,J. Math. Phys. 14:1746–1759 (1973).

    Google Scholar 

  6. J. Hardy, O. De Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlations functions,Phys. Rev. A 13:1959–1961 (1976).

    Google Scholar 

  7. D. Choppard and M. Droz, Cellular automaton model for heat conduction in a fluid,Phys. Rev. Lett. A 126:476–480 (1988).

    Google Scholar 

  8. D. d'Humières and P. Lallemand, 2-D and 3-D hydrodynamics on lattice gases,Helv. Phys. Acta 59:1231–1234 (1986).

    Google Scholar 

  9. S. Chen, M. Lee, K. H. Zhao, and G. Doolen, A lattice gas model with temperature,Physica D 37:42–59 (1989).

    Google Scholar 

  10. R. Brito and M. H. Ernst, Propagating staggered waves in cellular automata fluids,J. Phys. A (1991).

  11. D. d'Humières, Y. H. Quian, and P. Lallemand, Finding the linear invariants of lattice gases, inComputational Physics and Cellular Automata (World Scientific, Singapore, 1990), pp. 97–115.

    Google Scholar 

  12. Y. H. Quian, D. d'Humières, and P. Lallemand, Diffusion simulations with a deterministic one-dimensional lattice-gas model,J. Stat. Phys., this issue.

  13. Y. H. Quian, D. d'Humières, and P. Lallemand, A one dimensional lattice Boltzmann equation with Galilean invariance, inAdvanced in Kinetic Theory and Continuum Mechanics (Springer-Verlag, 1991), pp. 127–138.

  14. D. Levermore and D. d'Humières, Preprint (1991).

  15. D. d'Humières, Y. H. Quian, and P. Lallemand, Invariants in lattice gases models, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics (World Scientific, Singapore, 1989), pp. 102–113.

    Google Scholar 

  16. G. Zanetti, Counting hydrodynamic modes in lattice gas automata models,Physica D 47:30–35 (1991).

    Google Scholar 

  17. G. Zanetti, The hydrodynamics of lattice gas automata,Phys. Rev. A 40:1539–1548 (1989).

    Google Scholar 

  18. L. P. Kadanoff, G. McNamara, and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory,Phys. Rev. A 40:4527–4549 (1989).

    Google Scholar 

  19. D. d'Humières and P. Lallemand, Numerical simulations of hydrodynamics with lattice gas automata,Complex Systems 1:599–632 (1987).

    Google Scholar 

  20. O. E. Sero-Guillaume and D. Bernardin, A lattice gases model for heat transfer and chemical reactions,Eur. J. Mech. B 9:177–196 (1990).

    Google Scholar 

  21. D. Bernardin, O. H. Sero-Guillaume, and C. H. Sun, Multispecies 2-D lattice gas with energy levels: Diffusive properties,Physica D 47:169–188 (1991).

    Google Scholar 

  22. D. Bernardin, O. E. Sero-Guillaume, and C. H. Sun, Thermal conduction in 2-D lattice gases, inDiscrete Models of Fluid Dynamics (World Scientific, Singapore, 1991), pp. 72–84.

    Google Scholar 

  23. K. Molvig, P. Donis, R. Miller, J. Myczkowsky, and G. Vichniac, Multi-species lattice-gas automata for realistic fluid dynamics, inCellular Automata and Modelling of Complex Physical Systems (Springer-Verlag, 1989), pp. 206–231.

  24. U. Frisch, D. d'Humières, B. Hasslacher, Y. Pomeau, and J. P. Rivet, Lattice gas hydrodynamics in two and three dimensions,Complex Systems 1:649–707 (1987).

    Google Scholar 

  25. R. Gatignal,Theorie cinètique des gaz à répartition discrète de vitesses (Lecture Notes in Physics, 36, 1975).

  26. D. Bernardin and O. E. Sero-Guillaume, Lattice gases mixtures models for mass diffusion,Eur. J. Mech. B 9:21–46 (1990).

    Google Scholar 

  27. P. Grosfils, J. P. Boon, and P. Lallemand,Phys. Rev. Lett. 68:1077 (1992).

    Google Scholar 

  28. C. H. Sun, Ph.D. thesis. LEMTA Nancy, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardin, D. Global invariants and equilibrium states in lattice gases. J Stat Phys 68, 457–495 (1992). https://doi.org/10.1007/BF01341758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01341758

Key words

Navigation