Skip to main content
Log in

Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement

III. Outer rhabdomeres absentJK84, small optic lobesKS58 and no object fixation EB12, visual mutants

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Autoradiographs of the brains of the visual mutantsouter rhabdomeres absent JK84 (ora),small optic lobes KS58 (KS58) andno object fixation E B12 (B12) have been obtained by the deoxyglucose method. The patterns of metabolic activity in the optic lobes of the visually stimulated mutants is compared with that of similarly stimulated wildtype (WT) flies which was described in Part I of this work (Buchner et al. 1984b).

In the mutantKS58 the optomotor following response to movement is nearly normal despite a 40–45% reduction of volume in the visual neuropils, medulla and lobula complex. InB12 flies the volume of these neuropils and the optomotor response are reduced. In autoradiographs of both mutants the pattern of neuronal activity induced by stimulation with moving gratings does not differ substantially from that in the WT. It suggests that only neurons irrelevant to movement detection are affected by the mutation. However, in the lobula plate of someKS58 flies and in the second chiasma of allB12 flies, the pattern of metabolic activity differs from that observed in WT flies. Up to now no causal relation has been found between the modifications described in behaviour or anatomy and those observed in the labelling of these mutants.

In the ommatidia ofora flies the outer rhabdomeres are lacking while the central photoreceptors appear to be normal. Stimulus-specific labelling is absent in the visual neuropil of these mutants stimulated with movement or flicker. This result underlines the importance of the outer rhabdomeres for visual tasks, especially for movement detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DG :

deoxyglucose

KS58 :

small optic lobesKS58

B12 :

no object fixation EB12

JK84 :

ora outer rhabdomeres absent JK84

WT :

wildtype

References

  • Buchner E, Buchner S (1980) Mapping stimulus-induced nervous activity in small brains by3H-2-deoxy-D-glucose. Cell Tissue Res 211:51–64

    Google Scholar 

  • Buchner E, Buchner S (1983) Anatomical localization of functional activity in flies using3H-2-deoxy-D-glucose. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 225–238

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff H (1984a) Identification of3H-deoxyglucose labelled interneurons in the fly from serial autoradiographs. Brain Res 305:384–388

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff I (1984b) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. I. Wildtype. J Comp Physiol A 155:471–483

    Google Scholar 

  • Bülthoff H (1982a)Drosophila mutants disturbed in visual orientation. I. Mutants affected in early visual processing. Biol Cybern 45:63–70

    Google Scholar 

  • Bülthoff H (1982b)Drosophila mutants disturbed in visual orientation. II. Mutants affected in movement and position computation. Biol Cybern 45:71–77

    Google Scholar 

  • Bülthoff H, Götz KG (1979) Analogous motion illusion in man and fly. Nature 278:636–638

    Google Scholar 

  • Bülthoff I, Buchner E (1985) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. II. Optomotor blind H31 and lobula plate-lessN684, visual mutants. J Comp Physiol A 156:25–34

    Google Scholar 

  • Coombe PE (1984) The role of retinula cell types in fixation behaviour of walkingDrosophila melanogaster. J Comp Physiol A 155:661–672

    Google Scholar 

  • Fischbach KF (1981) Simplified visual behavior of the small optic lobes mutant ofDrosophila melanogaster. Abstract of 3rd Congress of ESCPB Pergamon Elmsford, NY, pp 229–230

  • Fischbach KF (1983) Neurogenetik am Beispiel des visuellen Systems vonDrosophila melanogaster. Habilitationsschrift, Universität Würzburg

  • Fischbach KF, Heisenberg M (1981) Structural brain mutant ofDrosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. Proc Natl Acad Sci 78:1105–1109

    Google Scholar 

  • Fischbach KF, Technau G (1984) Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants ofDrosophila melanogaster. Dev Biol 104:219–239

    Google Scholar 

  • Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye ofDrosophila melanogaster. J Physiol 256:415–439

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 523–559

    Google Scholar 

  • Heisenberg M, Böhl K (1979) Isolation of anatomical brain mutants ofDrosophila by histological means. Z Naturforsch 34c:143–147

    Google Scholar 

  • Heisenberg M, Buchner E (1977) The rôle of retinula cell types in visual behavior ofDrosophila melanogaster. J Comp Physiol 117:127–162

    Google Scholar 

  • Koenig J, Merriam JR (1977) Autosomal ERG mutants. Drosophila Inf Serv 52:50–51

    Google Scholar 

  • Rodrigues V, Bülthoff I (1985) Freeze-substitution ofDrosophila heads for subsequent3H-2-deoxyglucose autoradiography. J Neurosci Methods 13:183–190

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The14C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal value in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bülthoff, I. Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. J. Comp. Physiol. 158, 195–202 (1986). https://doi.org/10.1007/BF01338562

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01338562

Keywords

Navigation