Skip to main content
Log in

Spectral sensitivity of photoreceptors in insect compound eyes: Comparison of species and methods

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Three different methods were used to determine the spectral sensitivity of retinula cells in the compound eyes of three species of hymenopteran insects (Apis mellifera, Melipona quadrifasciata, Osmia rufa). The conventional flash method gives the least reliable results. Sensitivity is extremely sensitive to small fluctuations of the resting potential and long lasting changes induced by preceding test flashes. The ramp method, which speeds up a spectral scan to about 1 min and keeps effective illumination constant at every flash, determines S(λ) much more reliably. The best results are obtained with the spectral scan method, which provides the experimenter with aS(λ) function of high spectral resolution within 20 s. Using this method we demonstrate that the high observed variability inS(λ) of individual receptors is the result of the inadequacy of the flash method, which was the only method used in earlier studies.

Double microelectrode experiments and variations of the stimulus conditions reveal that field potentials and return flow of electric current produced by activated neighboring cells have no effect in the bee eye. We conclude that the model of Shaw (1975, 1981) of current flow in the locust and fly eye does not apply to the bee eye. Very rare recordings (about 1%) of UV receptors with hyperpolarizing responses to long wavelength light are interpreted as having a synaptic inhibitory connection to green receptors.

The improvement of spectral measurements of single receptors allows us for the first time to model the spectral input to a color-coding network with great precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum H, Burkhardt D (1960) Die spektrale Empfindlichkeit einzelner Sehzellen. Naturwissenschaften 47:527

    Google Scholar 

  • Autrum H, Zwehl V von (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384

    Google Scholar 

  • Burkhardt D (1962) Spectral sensitivity and other responses of single visual cells in the arthropod eye. Symp Soc Exp Biol 16:86–109

    Google Scholar 

  • Burkhardt D, Autrum H (1960) Die Belichtungspotentiale einzelner Sehzellen vonCalliphora erythrocephala. Z Naturforsch 15b:612–616

    Google Scholar 

  • Coles JA, Tsacopoulos M (1979) Potassium activity in photoreceptors, glia cells and extracellular space in the drone retina: changes during photo-stimulation. J Physiol 290:525–549

    Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478

    Google Scholar 

  • Erber J, Menzel R (1977) Visual interneurons in the median protocerebrum of the bee. J Comp Physiol 121:65–77

    Google Scholar 

  • Fleissner G (1982) Isolation of an insect circadian clock. J Comp Physiol 149:311–316

    Google Scholar 

  • Franceschini N (1984) Chromatic organization and sexual dimorphism of the fly retinal mosaic. In: Borsellino A, Cervetto L (eds) Photoreceptors. Plenum Corp, pp 319–350

  • Frisch K von (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Abt Allgem Zool Physiol 35:1–188

    Google Scholar 

  • Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors in invertebrates. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hardie RC (1979) Electrophysiological analysis of fly retina. I. Comparative properties of R1-6 and R7 and 8. J Comp Physiol 129:19–33

    Google Scholar 

  • Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8. Evidence for a sensitizing function. Biophys Struct Mech 9:171–180

    Google Scholar 

  • Hardie RC, Franceschini N, McIntyre PD (1979) Electrophysiological analysis of fly retina. II. Spectral and polarization sensitivity in R7 and R8. J Comp Physiol 133:23–39

    Google Scholar 

  • Heiversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231

    Google Scholar 

  • Hertel H, Ventura D (1985) Spectral sensitivity of photoreceptors in the compound eye of stingless tropical bees. J Insect Physiol 31:931–935

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R, Matic T (1983) Single electrode studies on the retina of the butterflyPapilio. J Comp Physiol 150:271–294

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R (1984) Colour vision in butterflies. Single colour experiments. J Comp Physiol A 155:529–542

    Google Scholar 

  • Kien J, Menzel R (1977a) Chromatic properties of interneurons in the optic lobe of the bee. I. Broad band neurons. J Comp Physiol 113:17–34

    Google Scholar 

  • Kien J, Menzel R (1977b) Chromatic properties of interneurons in the optic lobe of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol 113:35–53

    Google Scholar 

  • Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitizing pigment in fly photoreceptors. Nature 269:386–390

    Google Scholar 

  • Langer H, Schneider L (1972) Lichtsinneszellen. In: Ruska (ed) Lehrbuch der Cytologie. VEB Fischer, Jena

    Google Scholar 

  • Lipetz LE (1971) The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein WR (ed) Principles of receptor physiology (Handbook of sensory physiology, vol I) Springer, Berlin Heidelberg New York, pp 191–225

    Google Scholar 

  • Matic T, Laughlin SB (1981) Changes in the intensity-response function of an insect's photoreceptors due to light adaptation. J Comp Physiol 145:169–178

    Google Scholar 

  • Menzel R (1974) Colour receptor in insects. In: Horridge GA (ed) The compound eye and vision in insects. Clarendon Press, Oxford, pp 121–153

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Vision in invertebrates (Hand-book of sensory physiology, vol VII/6A) Springer, Berlin Heidelberg New York, pp 504–580

    Google Scholar 

  • Menzel R (1985) Colour pathways and colour vision in the honeybee. In: Zeki S (ed) Central and peripheral mechanisms of colour vision. Pergamon Press, Oxford London, pp 211–233

    Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye — morphology and spectral sensitivity. J Comp Physiol 108:11–33

    Google Scholar 

  • Menzel R, Erber J, Greggers U (1978) On-line computation of photoreceptor spectral sensitivity — a low-cost solution — with a programmable pocket calculator. Vision Res 18:879–882

    Google Scholar 

  • Milde J (1982) Elektrophysiologische und anatomische Untersuchungen an Interneuronen erster und höherer Ordnung des Ocellensystems der Biene (Apis mellifica carnica). FU Berlin, Dissertation

    Google Scholar 

  • Riehle A (1981) Color opponent neurons of the honey bee in a heterochromatic flicker test. J Comp Physiol 142:81–88

    Google Scholar 

  • Schäfer S (1984) Charakterisierung extrinsischer Großfeldneuronen aus der Medulla der Honigbiene (Apis mellifera). FU Berlin, Diplomarbeit

    Google Scholar 

  • Schlecht P (1979) Colour discrimination in dim light: An analysis of the photoreceptor arrangement in the moth,Deilephila. J Comp Physiol 129:257–267

    Google Scholar 

  • Shaw SR (1969) Interreceptor coupling in ommatidia of drone honeybee and locust compound eye. Vision Res 9:999–1029

    Google Scholar 

  • Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255:480–483

    Google Scholar 

  • Shaw SR (1977) Restricted diffusion and extracellular space in the insect retina. J Comp Physiol 113:257–282

    Google Scholar 

  • Shaw SR (1981) Anatomy and physiology of identified nonspiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Roberts A, Bush BMH (eds) Neurones without impulses. University Press, Cambridge MA, pp 61–116

    Google Scholar 

  • Smakman JGJ, Pijpker BA (1983) An analog-digital feedback system for measuring photoreceptor properties with an equal response method. J Neurosci Meth 8:365–373

    Google Scholar 

  • Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135

    Google Scholar 

  • Vogt K (1984) The chromophore of the visual pigment in some insect orders. Z Naturforsch 39c: 196–197

    Google Scholar 

  • Wehner R, Bernard GD (1980) Intracellular optical physiology of the bee's eye. II. Polarizational sensitivity. J Comp Physiol 137:205–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzel, R., Ventura, D.F., Hertel, H. et al. Spectral sensitivity of photoreceptors in insect compound eyes: Comparison of species and methods. J. Comp. Physiol. 158, 165–177 (1986). https://doi.org/10.1007/BF01338560

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01338560

Keywords

Navigation