Skip to main content
Log in

A theoretical model for the prediction of thermal expansion behaviour of particulate composites

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The thermal expansion coefficient of particle-reinforced polymers was evaluated using a theoretical model which takes into account the adhesion efficiency between the inclusions and the matrix — an important factor affecting the thermomechanical properties of a composite. To measure the adhesion efficiency a boundary interphase, i.e. a layer between the matrix and the fillers having a structure and properties different from those of the constituent phases, was considered. This layer is assumed to have varying properties.

To obtain information concerning the properties and extent of the interphase, an experimental study of the thermal behaviour of aluminium-epoxy composites was undertaken. Differential Scanning Calorimetry (DSC) measurements were performed to evaluate heat capacity with respect to temperature. In addition, the effects of different factors, such as heating rate and filler concentration on the glass transition temperature of the composite, were examined. The sudden changes in heat capacity values in the glass transition region were used to estimate the extent of the boundary interphase according to an existing theory.

Finally, the values of the thermal expansion coefficient, predicted by this model, were compared with theoretical results obtained by other authors and with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner PS (1946) J Res NBS 37:239

    Google Scholar 

  2. Kerner EH (1956) Proc Phys Soc 69B:808

    Google Scholar 

  3. Arthur G, Coulson JA (1964) J Nucl Mater 13:242

    Google Scholar 

  4. Thomas JP (1960) AD 287–826 General Dynamics, Fort Worth, Tex

  5. Schapery RA (1968) J Comp Mater 2:380

    Google Scholar 

  6. Kingery WD (1957) J Amer Ceram Soc 40:351

    Google Scholar 

  7. Warshaw SI, Seider R (1967) J Amer Ceram Soc 50:337

    Google Scholar 

  8. Nielsen LE (1967) J Comp Mat 1:100

    Google Scholar 

  9. Lazzlo F (1943) J Iron Steel Inst 147:173

    Google Scholar 

  10. Bodwen FB, Symposium on Internal Stresses in Metals and Alloys, 1947, Monograph and report series No 5 (Institute of Metals 1947)

  11. Nielsen JP, Hibbard WR Jr (1950) J Appl Phys 21:853

    Google Scholar 

  12. Newkirk HW Jr, Sisler HH (1958) J Amer Ceram Soc 41:93

    Google Scholar 

  13. Fulrath RM (1959) J Amer Ceram Soc 42:423

    Google Scholar 

  14. Binns DB (1962) Science of Ceramics 1 (Academic New York)

    Google Scholar 

  15. Fahmy AA, Ragai AI (1970) J Appl Phys 41:5108

    Google Scholar 

  16. Hashin Z (1962) J Appl Mech 29:143

    Google Scholar 

  17. Hashin Z, Rosen BW (1964) J Appl Mech 31:223

    Google Scholar 

  18. Wang TT, Kwei TK (1969) J Polym Sci A-2, 7:889

    Google Scholar 

  19. Van Der Poel C (1958) Rheol Acta 1:198

    Google Scholar 

  20. Kerner EH (1956) Proc Phys Soc B 69:808

    Google Scholar 

  21. Brassel GW, Wischmann KB (1974) J Mater Sci 9:307

    Google Scholar 

  22. Landon G, Lewis G, Boden GF (1977) J Mater Sci 12:1605

    Google Scholar 

  23. Malliaris A, Turner DT (1971) J Appl Phys 42:614

    Google Scholar 

  24. Kusi RP, Turner DT (1973) SPE J 29:56

    Google Scholar 

  25. Papanicolaou GC, Paipetis SA, Theocaris PS (1978) Colloid & Polym Sci 256:625

    Google Scholar 

  26. Papanicolaou GC, Theocaris PS (1979) Colloid & Polym Sci 257:239

    Google Scholar 

  27. Theocaris PS, Papanicolaou GC, Sideridis E (1982) J Reinf Plastics Comp 1:92

    Google Scholar 

  28. Sideridis E, Theocaris PS, Papanicolaou GC (1986) Rheol Acta 25:35

    Google Scholar 

  29. Theocaris PS (1985) New Developments in the Characterization of Polymers in the Solid State, in: Kausch HH, Zachmann HG (eds) Advances in Polymer Science, Springer, New York 66, 6:149

    Google Scholar 

  30. Theocaris PS, Varias AG (1985) J Appl Polymer Sci 30:2979

    Google Scholar 

  31. Holliday L, Robinson J (1973) J Mater Sci 8:301

    Google Scholar 

  32. Levin VM (1967) Mekhanika Tverdovo Tela 2:88

    Google Scholar 

  33. Van Fo Fy GA (1966) Soviet Phys-Doklady 11:176

    Google Scholar 

  34. Lipatov YS (1977) Physical Chemistry of Filled Polymers, translated from Russian by Moseley RJ, International Polymer Science and Technology Monograph No 2, originally published in “Khimiya”, Moscow

  35. Saada SA (1974) Elasticity. Theory and Applications, Pergamon Press, New York

    Google Scholar 

  36. Voyutsky SS (1963) Adhesion and Autoadhesion of Polymers (1960). Engl Trans Interscience Publ

  37. Landel R (1962) Publ Chem and Techn 35:291

    Google Scholar 

  38. Droste DH, DI Benedetto AT (1969) J Appl Polym Sci 13:2145

    Google Scholar 

  39. Theocaris PS, Sideridis E, Papanicolaou GC (1982) J Reinf Plast Comp 1 (1):93

    Google Scholar 

  40. Arthur C, Coulson JA (1964) J Nuclear Matls 23:242

    Google Scholar 

  41. Cribb L (1968) Nature 220:576

    Google Scholar 

  42. Tummala RR, Friedberg AL (1970) J Appl Phys 11:5104

    Google Scholar 

  43. Paipetis SA, Papanicolaou GC, Theocaris PS (1975) Fibre Science and Technology 8:221

    Google Scholar 

  44. Papanicolaou GC, Paipetis SA, Theocaris PS (1977) J Appl Polymer Sci 21:689

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sideridis, E., Papanicolaou, G.C. A theoretical model for the prediction of thermal expansion behaviour of particulate composites. Rheol Acta 27, 608–616 (1988). https://doi.org/10.1007/BF01337456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01337456

Key words

Navigation