Skip to main content
Log in

Shear viscosity of slightly-elastic concentrated suspensions at low and high shear rates

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A quasi-static asymptotic analysis is employed to investigate the elastic effects of fluids on the shear viscosity of highly concentrated suspensions at low and high shear rates. First a brief discussion is presented on the difference between a quasi-static analysis and the periodic-dynamic approach. The critical point is based on the different order-of-contact time between particles. By considering the motions between a particle withN near contact point particles in a two-dimensional “cell” structure and incorporating the concept of shear-dependent maximum packing fraction reveals the structural evolution of the suspension under shear and a newly asymptotic framework is devised. In order to separate the influence of different elastic mechanisms, the second-order Rivlin-Ericksen fluid assumption for describing normal-stress coefficients at low shear rates and Harnoy's constitutive equation for accounting for the stress relaxation mechanism at high shear rates are employed. The derived formulation shows that the relative shear viscosity is characterized by a recoverable shear strain,S R at low shear rates if the second normal-stress difference can be neglected, and Deborah number,De, at high shear rates. The predicted values of the viscosities increase withS R , but decrease withDe. The role ofS R in the matrix is more pronounced than that ofDe. These tendencies are significant when the maximum packing fraction is considered to be shear-dependent. The results are consistent with that of Frankel and Acrivos in the case of a Newtonian suspension, except for when the different divergent threshhold is given as [1 − (Φ/Φ m )1/2] − 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A (1) , A (2) :

Rivlin-Ericksen tensors, defined by eqs. (2) and (3)

D :

rate of deformation tensor, 1/2{(∇υ) + (∇υ)} = 1/2(L +L )

De :

Deborah number (relation of the fluid/characteristic time of the flow)

D/D t :

Harnoy's objective time derivative, eq. (6)

e i :

base vector of coordinate

E :

rate of viscous dissipation of the suspension

E (0) :

rate of viscous dissipation of the suspending fluid

h :

thickness of the fluid layer in the near-contact region

h 0 :

particle spacing

L :

velocity gradient, (∇υ)

n :

unit outer normal vector

N :

number of contact points

N 1 ,N 2 :

first and second normal-stress difference

p :

isotropic pressure

\(\bar p\) :

dimensionless isotropic pressure, defined by eq. (37)

P e :

Peclet number

r :

radius in cylindrical coordinates

R 0 :

particle radius

S 0 :

boundary of viscometric apparatus

dS :

increment of surface area

S R :

recoverable shear strain

U :

constant approach velocity of cells

υ i :

component of velocity vector

\(\bar v_i \) :

dimensionless velocity components, defined by eq. (37)

υ (0) :

velocity onS 0

V :

volume of liquid

α 1 ,α′ 1 :

Newtonian viscosity of the suspension medium

α * 1 ,α′ * 1 :

effective viscosity of the suspension

α 2 ,α 3 :

second-order coefficients of the Rivlin-Ericksen fluid

α * r ,α′ * r :

relative effective viscosity

\(\dot \gamma \) :

shear rate

\(\dot \gamma _0 \) :

macroscopic shear rate

ε :

dimensionless particle spacing

η,(0) :

dimensionless coordinates, defined by eq. (37)

λ :

relaxation time of the fluid

τ :

deviatoric stress tensor

τ ij :

component of the deviatoric stress tensor

Ω :

tensor of angular velocity of the principal axes of the rate-of-strain tensor

ø :

volume concentration of particles

ø 2d :

areal fraction obtained by 3/2ø

ø m :

maximum volume concentration of particles

ø 2d, m :

maximum areal fraction (= 3/2ø m ) of particles

ø m0 ,ø m∞ :

limiting values ofø m at the lowPe and highPe conditions

Ф v :

local rate of viscous dissipation per unit volume

l 0 :

effective radial dimension in the near-contact region

T :

total

⊤:

transpose

References

  1. Einstein A (1906) Ann Physik (4) 19:289; Corrections, (1911) ibid 34:591

    Google Scholar 

  2. Rutgers R (1962) Rheol Acta 2:305

    Google Scholar 

  3. Jeffrey DJ, Acrivos A (1976) AIChE J 22:417

    Google Scholar 

  4. Frankel NA, Acrivos A (1967) Chem Eng Sci 22:847

    Google Scholar 

  5. Goddard JD (1977) J Non-Newtonian Fluid Mech 2:169

    Google Scholar 

  6. Mewis J, Spaull AJB (1976) Advances in Colloid and Interface Sci 6:173

    Google Scholar 

  7. Metzner AB (1985) J Rheol 29:739

    Google Scholar 

  8. Tanaka H, White JL (1980) J Non-Newtonian Fluid Mech 7:333

    Google Scholar 

  9. Jarzebski GJ (1981) Rheol Acta 20:280

    Google Scholar 

  10. Huang LC (1982) PhD Thesis, Department of Chemical Engineering, University of Southern California, Los Angeles

    Google Scholar 

  11. Marrucci G, Denn MM (1985) Rheol Acta 24:317

    Google Scholar 

  12. Adler PM, Euzovsky M, Brenner H (1985) Intl J Multiphase Flow 11:387

    Google Scholar 

  13. Brady JF, Bossis G (1985) J Fluid Mech 155:105

    Google Scholar 

  14. Mewis J, De Bleyser R (1975) Rheol Acta 14:721

    Google Scholar 

  15. Russel WB (1980) J Rheol 24:287

    Google Scholar 

  16. Rivlin RS, Ericksen JL (1955) J Rational Mech Anal 4:323

    Google Scholar 

  17. Harnoy A (1976) J Fluid Mech 76:591

    Google Scholar 

  18. Coleman BD, Noll W (1961) Rev Modern Phys 33:239

    Google Scholar 

  19. Coleman BD, Noll W (1961) Trans Soc Rheol 5:41

    Google Scholar 

  20. Bird RB, Armstrong RC, Hassager O (1976) Dynamics of Polymeric Fluids Vol. 1 Wiley, New York

    Google Scholar 

  21. Batchelor GK (1970) J Fluid Mech 41:545

    Google Scholar 

  22. Schowalter WR, Chaffey CE, Brenner H (1968) J Coll Interface Sci 26:152

    Google Scholar 

  23. Boaillot JL, Camoin C, Belzons M, Blanc R, Guyon E (1982) Adv Coll Interface Sci 17:299

    Google Scholar 

  24. Batchelor GK (1974) Ann Rev Fluid Mech 6:227

    Google Scholar 

  25. Pearson JRA (1967) The Lubrication Approximation Applied to Non-Newtonian Flow Problems: A Perturbation Approach in Non-Linear Partial Differential Equations, (Ames WF ed), Academic Press, New York

    Google Scholar 

  26. Williams G, Tanner RI (1970) J Lubrication Technology Trans ASME Series F 92:216

    Google Scholar 

  27. Tanner RI, Huilgol RR (1975) Rheol Acta 14:959

    Google Scholar 

  28. Tanner RI (1972) AIChE J 22:910

    Google Scholar 

  29. Metzner AB (1971) Rheol Acta 10:434

    Google Scholar 

  30. Shirodkar P, Middleman S (1982) J Rheol 26:1

    Google Scholar 

  31. Brindley G, Davies JM, Walters K (1976) J Non-Newtonian Fluid Mech 1:19

    Google Scholar 

  32. Schowalter WR (1978) Mechanics of Non-Newtonian Fluids, Pergamon, Oxford

    Google Scholar 

  33. Barnes HA, Michael FE, Woodcock LV (1987) Chem Eng Sci 42:591

    Google Scholar 

  34. Quemada D (1978) Rheol Acta 17:632

    Google Scholar 

  35. Wildemuth CR, Williams MC (1984) Rheol Acta 23:627

    Google Scholar 

  36. Coleman BD, Noll W (1959) Arch Ratl Mech Anal 3:289

    Google Scholar 

  37. Quemada D (1986) Rheol Acta 25:647

    Google Scholar 

  38. Cross MM (1965) J Colloid Sci 20:417

    Google Scholar 

  39. Wildemuth CR, Williams MC (1986) Rheol Acta 25:649

    Google Scholar 

  40. Papir YS, Krieger IM (1970) J Colloid Interface Sci 34:126

    Google Scholar 

  41. Batchelor GK, O'Brien RW, (1977) Proc Roy Soc Lond A 355:313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ML., Cheau, TC. Shear viscosity of slightly-elastic concentrated suspensions at low and high shear rates. Rheol Acta 27, 596–607 (1988). https://doi.org/10.1007/BF01337455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01337455

Key words

Navigation