Skip to main content
Log in

Mean relaxation time approximation for dynamical correlation functions in stochastic systems near instabilities

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We present a simple approximation for dynamical correlation functions in stochastic systems which reproduces the high as well as the low frequency behaviour of the exact correlation functions. The approximation is applied in its lowest order to diffusion in a quartic potential and to autocatalytic chemical reaction systems as described by the Schlögl models. The results are compared to those from the conventional Mori-Zwanzig projection operator approach which reproduces only the short-time relaxation of the systems considered. The new approximation describes correctly slow relaxation processes, e.g. barrier crossing in a quartic potential and the slowing down of dynamic processes in finite autocatalytic systems near first and second order transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiegel, F.W.: Phys. Rep.95, 283 (1983)

    Google Scholar 

  2. McCammon, J.A.: Rep. Prog. Phys.47, 1 (1984)

    Google Scholar 

  3. Northrup, S.H., Hynes, J.T.: J. Chem. Phys.69, 5246 (1978)

    Google Scholar 

  4. Gardiner, C.W.: Handbook of Stochastic Methods. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  5. Pomeau, Y., Résibois, P.: Phys. Rep.19, 63 (1975)

    Google Scholar 

  6. Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys.49, 435 (1977)

    Google Scholar 

  7. Mori, H.: Prog. Theor. Phys.34, 399 (1965)

    Google Scholar 

  8. Zwanzig, R.: In: Lect. Theor. Phys. Brittin, W., Dunham, L. (eds.), Vol. 3, p. 135, New York: Wiley 1961

    Google Scholar 

  9. Schulten, K., Brünger, A., Nadler, W., Schulten, Z.: In: Synergetics — from Microscopic to Macroscopic Order. Frehland, E. (ed.), p. 80. Berlin, Heidelberg, New York, Tokyo: Springer 1984

    Google Scholar 

  10. Nadler, W., Schulten, K.: J. Chem. Phys. (in press)

  11. Szabo, A., Schulten, K., Schulten, Z.: J. Chem. Phys.72, 4350 (1980)

    Google Scholar 

  12. Schulten, K., Schulten, Z., Szabo, A.: J. Chem. Phys.74, 4426 (1981)

    Google Scholar 

  13. An early, though not systematic, attempt to apply the ideas of generalized moment expansion to optical bistability has been made in Della Donne, M., Richter, P.H., Ross, J.: Z. Phys. B — Condensed Matter42, 271 (1981)

    Google Scholar 

  14. Schlögl, F.: Z. Phys.253, 147 (1972)

    Google Scholar 

  15. Hänggi, P., Rösch, F., Trautmann, D.: Z. Naturforsch.33a, 402 (1978)

    Google Scholar 

  16. Hänggi, P.: Z. Naturforsch.33a, 1380 (1978)

    Google Scholar 

  17. Grossmann, S., Schranner, R.: Z. Phys. B — Condensed Matter and Quanta30, 325 (1978)

    Google Scholar 

  18. The evaluation of the inverse operator poses no problems in principle since δM does not belong to the kernel of L+

  19. Baker, G.A., Graves-Morris, P.: Padé-approximants. Vol. 2. Reading: Addison-Wesley 1981

    Google Scholar 

  20. Risken, H.: The Fokker Planck equation. Berlin, Heidelberg, New York, Tokyo: Springer 1984

    Google Scholar 

  21. Nadler, W., Schulten, K.: Phys. Rev. Lett.51, 1712 (1983)

    Google Scholar 

  22. Brünger, A., Schulten, K.: J. Chem. Phys. (in press)

  23. Palmer, R.G., Stein, D.L., Abrahams, E., Anderson, P.W.: Phys. Rev. Lett.53, 958 (1984)

    Google Scholar 

  24. Coleman, S.: In: Laws of hadronic matter. Zichichi, A. (ed.), p. 138. New York: Plenum 1973

    Google Scholar 

  25. Dekker, H., Kampen, N.G. van: Phys. Lett.73A, 374 (1979)

    Google Scholar 

  26. Kampen, N.G. van: J. Stat. Phys.17, 71 (1977)

    Google Scholar 

  27. Bernstein M., Brown, L.S.: Phys. Rev. Lett.52, 1933 (1984)

    Google Scholar 

  28. Kramers, H.A.: Physica7, 284 (1940)

    Google Scholar 

  29. Janssen, H.K.: Z. Phys.270, 67 (1974)

    Google Scholar 

  30. Vvedensky, D.D., Elderfield, D.J., Chang, T.S.: J. Phys.17A, L423 (1984)

    Google Scholar 

  31. Actually there is no transition at κ=0 in the stochastic model sinceN=0 becomes an absorbing state

  32. Jähnig, F., Richter, P.H.: J. Chem. Phys.64, 4645 (1976)

    Google Scholar 

  33. This relationship can be obtained using the generating function for the moments of the probability distribution given in Jähnig, F., Richter, P.H.: Ber. Bunsengesellsch. Phys. Chem.80, 1132 (1976)

    Google Scholar 

  34. Barber, N.M.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. 8, p. 145. London: Academic Press 1983

    Google Scholar 

  35. Grossmann and Schranner questioned the validity of the relationship λ1∼Ω−1/2. Their argument is that. — derived λ1∼exp(−Ω). But Janssen's derivation of this relation only which is true solely fora>3. Since long-and short-time approximation converge in the limit Ω→∞ we regard the relationship λ1∼Ω−1/2 to be correct

    Google Scholar 

  36. Lebedev, N.N.: Special functions and their applications, p. 29, Problem 6. Englewood Cliffs: Prentice Hall 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, W., Schulten, K. Mean relaxation time approximation for dynamical correlation functions in stochastic systems near instabilities. Z. Physik B - Condensed Matter 59, 53–61 (1985). https://doi.org/10.1007/BF01325382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01325382

Keywords

Navigation