Skip to main content
Log in

Ordering and phase transitions in ising systems with competing short range and dipolar interactions

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

As a simple model of order-disorder ferroelectrics or dipolar magnets we consider a simple cubic Ising-system with nearest neighbor exchangeJ and dipolar interaction of strengthµ 2/a 3. ForJa 3/µ 2<−1.3384 the ground-state is antiferromagnetic, while for −1.3384<Ja 3/µ 2<0.1270 the ground state consists of ferromagnetic rows (in spin direction) arranged antiferromagnetically in the plane perpendicular to it. AtJa 3/µ 2=0.1279 the structure changes to a layered antiferromagnetic structure with a twocomponent order parameter, while forJa 3/µ 2>0.16429 the ferromagnetic phase becomes stable (with domain arrangements depending on the shape of the sample). For all critical values ofJa 3/µ 2 where the bulk energies of two phases become equal also the interface energy between these phases is found to be zero.

The ordering at nonzero temperature is studied by means of mean-field approximations (MFA) and Monte Carlo (MC) calculations. It turns out that forJa 3/µ 2 of order unity the MFA overestimates ordering temperatures by about a factor of two, and predicts multicritical points (between the disordered and two ordered phases) at nonzero temperature, including two biaxial Lifshitz points which the MC work suggests to occur atT=0. In contrast to MFA the layered antiferromagnetic structure is found to be stable only at extremely lowT, because a metastable spin-glass phase (with random arrangement of ferromagnetic rows in the spin direction) has only slightly higher energy. The MFA also yields two regimes of helical phases which are “locked in” to the antiferromagnetic phases at uniaxial Lifshitz points occurring at the Brillouin zone boundary. In the MC-work various methods of treating the long-range interaction are investigated. While all kinds of truncations as well as compensating field methods are rather unsatisfactory in our case, Ewald summation techniques yield satisfactory results. Nevertheless strong fluctuations as well as strong finite size effects prevent us from making accurate exponent estimates, but arguments are given that there is no regime of broad visibility of Landaulike critical behavior. Finally the extension of our results to other lattices as well as experimental applications are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review see Abragam, A., Bouffard, V., Goldman, M., Roinel, Y.: J. phys.39, C6–1436 (1978)

    Google Scholar 

  2. For a recent review see Landesman, A.: J. phys.39, C6–1305 (1978)

    Google Scholar 

  3. Felsteiner, J., Misra, S.K.: Phys. Rev. B8, 253 (1973) Misra, S.K., Felsteiner, J.: Phys. Rev. B15, 4309 (1977)

    Google Scholar 

  4. Holmes, L.M., Als-Nielsen, J., Guggenheim, H.J.: Phys. Rev. B12, 180 (1975) Als-Nielsen, J., Holmes, L.M., Krebs-Larsen, F., Guggenheim, H.J.: Phys. Rev. B12, 191 (1975)

    Google Scholar 

  5. Beauvillain, P., Renard, J.P., Larsen, I., Walker, P.J.: Phys. Rev. B18, 3360 (1978)

    Google Scholar 

  6. Beauvillain, P., Renard, J.P., Hansen, P.E.: J. Phys. C10, L709 (1977)

    Google Scholar 

  7. Zalkin, A., Forrester, J.D., Templeton, D.H.: J. Chem. Phys.39, 2881 (1963)

    Google Scholar 

  8. Wolf, W.P., Meissner, H., Catanese, C.A.: J. Appl. Phys.39, 1134 (1968)

    Google Scholar 

  9. Lagendijk, E., Blöte, H.W.J., Huiskamp, W.J.: Physica61, 220 (1972)

    Google Scholar 

  10. Fisher, R.A., Hornung, E.W., Brodale, G.E., Giauque, F.W.: J. Chem. Phys.58, 5584 (1973)

    Google Scholar 

  11. For listings of appropriate materials see, e.g., Blinc, R., Zecs, B.: Soft Modes in Ferroelectrics and Antiferroelectrics. Amsterdam: North-Holland 1974 Jona, F., Shirane, G.: Ferroelectric Crystals, New York: Pergamon 1962 Sonin, A.S., Strukov, B.A: Einführung in die Ferroelektrizität, Berlin: VEB Akademieverlag 1974

    Google Scholar 

  12. Frossati, G.: J. phys.39, C6–1578 (1978); Pobell, F. priv. comm.

    Google Scholar 

  13. Larkin, A.I., Khmelnitskii, D.E.: Sov. Phys. JETP29, 1123 (1969)

    Google Scholar 

  14. Aharony, A.: Phys. Rev. B8, 3368 (1973)

    Google Scholar 

  15. Wegner, F.J., Riedel, E.K.: Phys. Rev. B7, 248 (1973); Brézin, E., Le Guillon, J.C., Zinn-Justin, J.: Phys. Rev. D8, 2418 (1973)

    Google Scholar 

  16. Domb, C., Green, M.S. (eds.): Phase Transitions and Critical Phenomena, Vol. 6, New York: Academic 1976

    Google Scholar 

  17. Landau, L.D., Lifshitz, E.M.: Statistical Physics, New York: Pergamon Press 1969

    Google Scholar 

  18. Ehses, K.H., Müser, H.E.: Ferroelectrics12, 247 (1976) see particularly the discussion of this experiment in Binder, K., Meissner, G., Mais, H.: Phys. Rev. B13, 4890 (1976) Tobón, R., Gordon, J.E.: Ferroelectrics17, 409 (1977) Gordon, J.E., Boal, D.G.: Ferroelectrics17, 411 (1977)

    Google Scholar 

  19. Ahlers, G., Kornblit, A., Guggenheim, H.J.: Phys. Rev. Lett.34, 1227 (1975) Als-Nielsen, J.: Phys. Rev. Lett.37, 1161 (1976)

    Google Scholar 

  20. Frohwein, R., Kötzler, J.: Z. Physik B25, 279 (1976); Frohwein, R., Kötzler, J., Assmus, W.: Phys. Rev. Lett.42, 739 (1979) and ref. therein.

    Google Scholar 

  21. Luttinger, J.M., Tisza, L.: Phys. Rev.70, 954 (1946)

    Google Scholar 

  22. Sauer, J.A.: Phys. Rev.57, 142 (1940)

    Google Scholar 

  23. Misra, S.K.: Phys. Rev. B8, 2026 (1973); B14, 5065 (1976)

    Google Scholar 

  24. Niemeyer, Th., Blöte, H.W.J.: Physica67, 125 (1973)

    Google Scholar 

  25. Aharony, A.: Phys. Rev. B8, 3349 (1973), and private communication

    Google Scholar 

  26. See e.g. Smart, J.S.: Effective Field Theories of Magnetism, London: Saunders 1966

    Google Scholar 

  27. Hemmer, P.C., Lebowitz, J.L. In: Phase Transitions and Critical Phenomena, Domb, C., Green, M.S. (eds.) Vol. 5b, p. 108, New York: Academic 1976

    Google Scholar 

  28. Bethe, H.: Proc. Roy. Soc. A150, 552 (1935); see also Burley, D. In: Phase Transitions and Critical Phenomena, Domb, C., Green, M.S. (eds.) Vol. 2, New York: Academic 1972

    Google Scholar 

  29. Kikuchi, R.: J. Phys.38, C7–307 (1977), and references therein

    Google Scholar 

  30. Domb, C., Green, M.S. (eds.): Phase Transitions and Critical Phenomena Vol. 3, New York: Academic 1974. See, however, Ref. [31]

    Google Scholar 

  31. Matvienko, G.V., Favorskii, I.A.: Sov. Phys. Solid State19, 1355 (1977)

    Google Scholar 

  32. Berlin, T.H., Thomson, J.S.: J. Chem. Phys.20, 1368 (1952) Lax, M.: J. Chem. Phys.20, 1351 (1952) see also Marrenga, M., Niemeyer, Th.: Physica78, 469 (1974)

    Google Scholar 

  33. Domany, E., Riedel, E.K.: J. Appl. Phys.49, 1315 (1978)

    Google Scholar 

  34. Berker, A.N., Ortlund, S., Putnam, F.A.: Phys. Rev. B17, 3650 (1978)

    Google Scholar 

  35. Kinzel, W.: Phys. Rev.B (in press)

  36. Binder, K.: In: Phase Transitions and Critical Phenomena Vol. 5 p. 1, Domb, C., Green, M.S. (eds.) New York: Academic 1976

    Google Scholar 

  37. Binder, K. (ed.): Monte Carlo Methods in Statistical Physics, Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  38. Vorontsov-Vel'yaminov, P.N., Favorskii, I.A.: Sov. Phys. Solid State15, 1937 (1974); Vorontsov-Vel'yaminov, P.N., Ushakova, E.M., Favorskii, I.A.: Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya39, 748 (1975) Favorskii, I.A., Vorontsov-Vel'yaminov, P.N., Matvienko, G.V., Ushakova, E.M., Gromova, N.B.: Ferroelectrics21, 489 (1978)

    Google Scholar 

  39. Mouritsen, O.G., Knak-Jensen, S.J.: Phys. Rev.B (to be published)

  40. Adams, D.J., McDonald, I.R.: Molec. Phys.32, 931 (1976)

    Google Scholar 

  41. Levesque, D., Patey, G.N., Weis, J.J.: preprint

  42. Valleau, J.P., Whittington, S.G. In: Modern Theoretical Chemistry Vol. 5, Berne, D.J. (ed.), New York: Plenum Press 1977

    Google Scholar 

  43. Watts, R.D.: Molec. Phys.28, 1069 (1974)

    Google Scholar 

  44. Barker, J.A., Watts, R.D.: Molec. Phys.26, 789 (1973)

    Google Scholar 

  45. de Jongh, L.J., Miedema, A.R.: Experiments on Magnetic Model Systems, London: Taylor & Francis 1974; de Jongh, L.J.: private communication

    Google Scholar 

  46. Ewald, P.P.: Ann. Phys. (Leipzig)64, 253 (1921); See also Born, M., Huang, K.: Dynamical Theory of Crystal Lattices, Oxford: Oxford University Press 1954

    Google Scholar 

  47. Niemeyer, Th.: Physica57, 281 (1972)

    Google Scholar 

  48. Aharony, A., Fisher, M.E.: Phys. Rev. B8, 3323 (1973)

    Google Scholar 

  49. Mitsui, T., Furuichi, J.: Phys. Rev.90, 193 (1953)

    Google Scholar 

  50. See also Krinsky, S., Mukamel, D.: Phys. Rev. B16, 2313 (1977)

    Google Scholar 

  51. Meijer, P.H.E., Niemeyer, Th.: Phys. Rev. B7, 1984 (1973)

    Google Scholar 

  52. Binder, K., Burkhardt, T.W., Kretschmer, R.: in preparation

  53. Kneller, E. In: Handbuch der Physik Vol. XVIII/2 Ferromagnetismus, (Flügge, S., Wijn, H.P.J. (eds.) p. 438, Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  54. Binder, K., Landau, D.P. In: Proc. of the 7th Int. Vacuum Congress and the 3rd Int. Conf. on Solid Surfaces, Dobro zemsky, R. (ed.) p. 811, (Vienna: F. Berger & Sons 1977), and to be published

    Google Scholar 

  55. Fishman, S., Aharony, A.: Phys. Rev. B (to be published)

  56. More details on this calculation are found in R. Kretschmer, Dissertation, Universität des Saarlandes, 6600 Saarbrücken 11 (unpublished), and JÜL-report (to be published)

  57. Fröhlich, H.: Theory of Dielectrics, Oxford: Clarendon Press 1968

    Google Scholar 

  58. Felderhof, B.U.: preprint

  59. Selke, W.: Z. Physik B29, 133 (1978), and references therein; see also Selke, W., Fisher, M.E.: preprint

    Google Scholar 

  60. Fisher, M.E. In: Critical Phenomena, Green, M.S. (ed.), New York: Academic Press 1971

    Google Scholar 

  61. Binder, K.: Thin Solid Films20, 367 (1974)

    Google Scholar 

  62. Landau, D.P.: Phys. Rev. B13, 2997 (1976); B14, 255 (1976)

    Google Scholar 

  63. Binder, K., Landau, D.P.: Phys. Rev. B13, 1140 (1976)

    Google Scholar 

  64. A similar crossover has been found at the multicritical point atT=0 of the two-dimensional Ising square lattice with nearest neighbor interactionJ nn <0 and next-nearest neighbor interactionJ nnn =J nn /2 (D.P. Landau, priv. communication)

  65. Binder, K., Landau, D.P.: to be published

  66. Gesi, K., Ozava, K.: Jap. J. Appl. Phys.17, 435 (1978)

    Google Scholar 

  67. Yasuda, N., Okamoto, M., Shimizu, H., Fujimoto, S., Yoshino, K., Inuishi, Y.: Phys. Rev. Lett.41, 1311 (1978)

    Google Scholar 

  68. Blinc, R.: private comm.

  69. Skjeltorp, A.T., Catanese, C.A., Meissner, H.E., Wolf, W.P.: Phys. Rev. B7, 2062 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 130 “Ferroelektrika”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretschmer, R., Binder, K. Ordering and phase transitions in ising systems with competing short range and dipolar interactions. Z Physik B 34, 375–392 (1979). https://doi.org/10.1007/BF01325203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01325203

Keywords

Navigation