Skip to main content
Log in

THz-field induced nonlinear transport and dc voltage generation in a semiconductor superlattice due to Bloch oscillations

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We report on a theoretical analysis of terahertz (THz-) field induced nonlinear dynamics of electrons in a semiconductor superlattice that are capable to perform Bloch oscillations. Our results suggest that for a strong THz-field a dc voltage should be generated. We have analyzed the real-time dynamics using a balance equation approach to describe the electron transport in a superlattice miniband. Taking account of both Bloch oscillations of electrons in a superlattice miniband and dissipation, we studied the influence of a strong THz-field on currently available superlattices at room temperature. We found that a THz-field can lead to a negative conductance resulting in turn in a THz-field induced dc voltage, and that the voltage per superlattice period should show, for varying amplitue of the THz-field, a form of wisted plateaus with the middle points being with high precision equal to the photon energy divided by the electron charge. We show voltage to the finite voltage state, and that in the finite voltage state dynamic localization of the electrons in a miniband occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloch, F.: Z. Physik52, 555 (1928).

    Google Scholar 

  2. Zener, C.: Proc. Roy. Soc. London Ser. A145, 523 (1934).

    Google Scholar 

  3. Esaki, L., Tsu, R.: IBM J. Res. Develop.14, 61 (1970); Raphael Tsu, in “Semiconductor interfaces, microstructures and devices: Properties and applications”, edited by Z.C. Feng (Institute of Physics Publishing, Bristol and Philadelphia, 1993), p. 3

    Google Scholar 

  4. Sibille, A., Palmier, J.F., Wang, H., Mollot, F.: Phys. Rev. Lett.64, 52 (1990)

    Google Scholar 

  5. Beltram, F., Capasso, F., Sivco, D.L., Hutchinson, A.L., Chu, S.N.G., Cho, A.Y.: Phys. Rev. Lett.64, 3167 (1990)

    Google Scholar 

  6. Grahn, H.T., von Klitzing, K., Ploog, K., Döhler, G.H.: Phys. Rev. B43, 12094 (1991)

    Google Scholar 

  7. Sibille, A., Palmier, J.F., Minot, C.; in “Semiconductor interfaces and microstructures”, edited by Z.C. Feng (World Scientific, Singapore, 1992), p. 31

    Google Scholar 

  8. Feldmann, J., Leo, K., Shah, J., Miller, D.A.B., Cunningham, J.E., Meier, T., von Plessen, G., Schulze, A., Thomas, P., Schmitt-Rink, S.: Phys. Rev. B46, 7252 (1992)

    Google Scholar 

  9. Waschke, C., Roskos, H.G., Schwedler, R., Leo, K., Kurz, H., Köhler, K.: Phys. Rev. Lett.70, 3319 (1993)

    Google Scholar 

  10. Ignatov, A.A., Schomburg, E., Renk, K.F., Schatz, W., Palmier, J.F., Mollot, F.: Annalen der Physik3, 137 (1994)

    Google Scholar 

  11. Ignatov, A.A., Renk, K.F., Dodin, E.P.: Phys. Rev. Lett.70, 1996 (1993)

    Google Scholar 

  12. Dunlap, D.H., Kovanis, V., Duncan, R.V., Simmons, J.: Phys. Rev. B48, 7975 (1993)

    Google Scholar 

  13. Ignatov, A.A., Romanov, Yu.A.: Radiophysics and Quantum Electronics Consultants Bureau. New York21, 91 (1978)

    Google Scholar 

  14. Ignatov, A.A., Shashki, V.I.: Phys. stat. sol. (b)110, K117 (1982)

    Google Scholar 

  15. Ignatov, A.A., Romanov, Yu.A.: Phys. stat. sol. (b)73, 327 (1976)

    Google Scholar 

  16. Dunlap, D.H., Kenkre, Y.M.: Phys. Rev. B34, 3625 (1986); ibid. Phys. Rev. B37, 6622 (1987)

    Google Scholar 

  17. Dunlap, D.H., Kenkre, V.M.: Phys. Lett. A127, 438 (1988)

    Google Scholar 

  18. Holthaus, M.: Phys. Rev. Lett.69, 351 (1992)

    Google Scholar 

  19. Zhao, X.-G.: Phys. Lett. A167, 291 (1992); X.-G. Zhao and Q. Niu, Phys. Lett.A 191, 181 (1994)

    Google Scholar 

  20. Wang, X.H., Yao, X.X.: Phys. Lett. A167, 295 (1992)

    Google Scholar 

  21. Hone, D.W., Holthaus, M. Phys. Rev. B48, 15123 (1993)

    Google Scholar 

  22. Zak, J.: Phys. Rev. Lett.71, 2623 (1993)

    Google Scholar 

  23. Barone, A., Paterno, G.: Physics and Applications of the Josephson Effect (Wiley, New York, 1982), Chap. 6

    Google Scholar 

  24. Kleiner, R., Steinmeyer, F., Kunkel, G., Müller, P.: Phys. Rev. Lett.68, 2394 (1992)

    Google Scholar 

  25. Ignatov, A.A., Dodin, E.P., Shashkin, V.I.: Mod. Phys. Lett.B5, 1087 (1991)

    Google Scholar 

  26. Hadjazi, M., Palmier, J.F., Sibille, A., Wang, H., Paris, E., Mollot, F.: Electr. Lett.29, 648 (1993)

    Google Scholar 

  27. Minot, C., Le Person, H., Palmier, J.F., Sahri, N., Mollot, F., Planel, R.: Semicond. Sci. Technol.9, 789 (1994)

    Google Scholar 

  28. Prengel, F., Wacker, A., Schöll, E.: Phys. Rev. B50, 1705 (1994)

    Google Scholar 

  29. Grahn, H.T., Haug, R.J., Müller, W., Ploog, K.: Phys. Rev. Lett.67, 1618 (1991)

    Google Scholar 

  30. Grahn, H.T.: Phys. Scr. T49, 507 (1993)

    Google Scholar 

  31. Tsu, R., Esaki, L.: Phys. Rev. B43, 5204 (1991)

    Google Scholar 

  32. Meier, T., von Plessen, G., Thomas, P., Koch, S.W. Phys. Rev. Lett.73, 902 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatov, A.A., Schomburg, E., Grenzer, J. et al. THz-field induced nonlinear transport and dc voltage generation in a semiconductor superlattice due to Bloch oscillations. Z. Physik B - Condensed Matter 98, 187–195 (1995). https://doi.org/10.1007/BF01324524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01324524

PACS

Navigation