Skip to main content
Log in

The endomembrane system and mechanism of membrane flow in the green alga,Gloeomonas kupfferi (Volvocales, Chlorophyta) I. An ultrastructural analysis

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The endomembrane system of the chlamydomonad flagellate,Gloeomonas kupfferi (Chlorophyta), is complex. It consists of a proliferating ER network, a perinuclear complex of 14–18 dictyosomes and 8–12 vacuoles and an anterior contractile vacuole complex. The ER network extends from the nuclear envelope outwards, ensheafhs a dictyosome, extends out through a lobe of the chloroplast and terminates in the thin zone of peripheral cytoplasm between the chloroplast and plasmamembrane. The individual dictyosome is polar with distinct cis- and trans-faces. The cis-face is closely associated with transition vesicles emerging from the adjacent ER. Large vesicles emerge from peripheral swellings of terminal cisternae. The dictyosome-associated ER is connected to the peripheral vacuolar system. During cell division and cytokinesis, changes in the endomembrane system occur. Dictyosomes divide and quickly separate to form perinuclear complexes around the daughter nuclei. Each dictyosome undergoes morphological changes during this wall precursor-producing stage. ER lines the furrow zone and is closely associated with phycoplast microtubules. A discussion of the endomembrane system in membrane flow mechanics is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

OsFeCN:

Osmium ferricyanide

References

  • Catt JW, Hills GJ, Roberts K (1976) A structural glycoprotein containing hydroxyproline, isolated from the cell wall ofChlamydomonas reinhardii. Planta 131: 165–171

    Google Scholar 

  • Cerenius L, Rennie P, Fowke LC (1988) Endocytosis of cationized ferritin by zoospores of the fungusAphanomyces euteiches. Protoplasma 144: 119–124

    Google Scholar 

  • Domozych DS (1987) Cell division inCarteria crucifera (Chlorophyta): The role of the endomembrane system and phycoplast. Protoplasma 136: 170–182

    Google Scholar 

  • —, Stewart KD, Mattox KR (1981 a) Development of the cell wall inTetraselmis: role of the Golgi apparatus and extracellular wall assembly. J Cell Sci 52: 351–371

    Google Scholar 

  • —, Mattox KR, Stewart KD (1981 b) The role of microtubules during the cytokinetic events of cell wall ontogenesis and papilla development inCarteria crucifera. Protoplasma 106: 193–204

    Google Scholar 

  • Dunphy WG, Rothman JE (1985) Compartmental organization of the Golgi stack. Cell 42: 13–21

    Google Scholar 

  • Goodenough UW, Heuser JE (1988) Molecular organization of the cell wall and cell wall crystals fromChlamydomonas eugametos. J Cell Sci 90: 735–750

    Google Scholar 

  • Grief C, Shaw PJ (1987) Assembly of cell wall glycoproteins ofChlamydomonas reinhardii: oligosaccharides are added in medial and trans Golgi compartments. Planta 171: 302–312

    Google Scholar 

  • Gruber HE, Rosario B (1979) Ultrastructure of the Golgi apparatus and contractile vacuole inChlamydomonas reinhardi. Cytologia 44: 505–526

    Google Scholar 

  • Hausmann K, Patterson DJ (1981) Involvement of smooth and coated vesicles in the function of the contractile vacuole complex of some cryptophycean flagellates. Exp Cell Res 135: 449–453

    Google Scholar 

  • Hepler PK (1981) The structure of the endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26: 102–110

    Google Scholar 

  • — (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111: 121–133

    Google Scholar 

  • Hillmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplasts using lectin-gold conjugates. Eur J Cell Biol 41: 142–149

    Google Scholar 

  • Iyengar Mop, Desikachary TV (1981) Volvocales. Hoe and Co, Madras, India, pp 532

    Google Scholar 

  • McFadden GI, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellateScherffelia dubia (Prasinophyceae) I: Flagellar regeneration. Protoplasma 130: 186–198

    Google Scholar 

  • Moestrup O, Thomassen HA (1974) An ultrastructural study of the flagellatePyramimonas orientalis with partial emphasis on Golgi apparatus activity and the flagellar apparatus. Protoplasma 81: 247–269

    Google Scholar 

  • —, Walne PL (1979) Studies on scale morphogenesis in the Golgi apparatus ofPyramimonas tetrarrhyncus (Prasinophyceae). J Cell Sci 36: 437–459

    Google Scholar 

  • Morré DJ (1987) The Golgi apparatus. Int Rev Cytol [Suppl] 17: 211–253

    Google Scholar 

  • Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, New York, pp 123–154

    Google Scholar 

  • Patterson DJ, Hausmann K (1981) The behaviour of contractile vacuole complexes of cryptophycean flagellates. Br Phycol J 16: 429–439

    Google Scholar 

  • Picton JM, Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    Google Scholar 

  • Quader H, Vankempen R, Stelzer R, Robinson DG (1983) Studies on the contractile vacuole ofPoterioochromonas malhamensis Peterfi. II. Antimonate stains the contractile vacuole ofPoterioochromonas. Eur J Cell Biol 30: 283–287

    Google Scholar 

  • Roberts K, Hills GJ, Shaw PJ (1982) The structure of algal cell walls. In: Harris J (ed) Electron microscopy of proteins, vol 3. Academic Press, London, pp 1–40

    Google Scholar 

  • Robinson DG, Kristen U (1982) Membrane flow via the Golgi apparatus of higher plant cells. Int Rev Cytol 77: 89–127

    Google Scholar 

  • — (1985) Plant membranes: endo and plasmamembranes of plant cells. Wiley, New York (Cell biology monographs, vol 3)

    Google Scholar 

  • Staehelin LA, Chapman RL (1987) Secretion and membrane recycling in plant cells, novel intermediary structures visualized in ultrarapidly frozen sycamore and carrot suspension-culture cells. Planta 171: 43–51

    Google Scholar 

  • Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138: 173–187

    Google Scholar 

  • —, Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162: 481–486

    Google Scholar 

  • Wessel G, Robinson DG (1979) Studies on the contractile vacuole ofPoterioochromonas malhamensis Peterfi. I. The structure of alveolate vesicles. Eur J Cell Biol 19: 60–66

    Google Scholar 

  • Zhang Y-H, Robinson DG (1986) The endomembranes ofChlamydomonas reinhardii: a comparison of the wildtype with the wall mutants CW2 and CW15. Protoplasma 133: 186–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domozych, D.S. The endomembrane system and mechanism of membrane flow in the green alga,Gloeomonas kupfferi (Volvocales, Chlorophyta) I. An ultrastructural analysis. Protoplasma 149, 95–107 (1989). https://doi.org/10.1007/BF01322982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322982

Keywords

Navigation