Skip to main content
Log in

Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Confocal laser scanning microscopy (CLSM) and fluorochromes were used to visualize the assimilate-conducting sieve cells of conifers in vivo. When still nucleate, the cytoplasm of these cells shows streaming and occupies the cell periphery including the pitlike, thin wall regions where sieve areas would develop. During differentiation the nuclear fluorescence and the central vacuoles disappear. At maturity and after ER-specific staining the sieve areas are the most conspicuous character of sieve cells. Those linking two sieve cells are covered on either side with prominent amounts of ER, while those leading to a Strasburger (=albuminous) cell show fluorescence on the sieve-cell side only. Within the sieve-area wall fluorescence appears also in the common median cavity which is part of the symplastic path between sieve cells. Electron microscopy (EM) depicts the ER as complexes of densely convoluted tubules of smooth ER, equally on either side of a sieve area, provided that the fixation of this sensitive tissue is appropriate. Purposeful wounding causes a swelling and vesiculation of the ER-tubules which is visible in both CLSM and EM. Electron micrographs of ER-complexes at sieve areas -in this paper demonstrated in vivo -have often been argued to be artefacts, since they should raise flow resistance considerably and are not consistent with the Münch hypothesis on phloem transport. The implications of this location for phloem transport are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscopy

DiOC:

3,3′-dioxacarbocyanine iodide

EM:

electron microscopy

ER:

endoplasmic reticulum

FDA:

fluorescein diacetate

References

  • Aikman DS (1980) Contractile proteins and hypotheses concerning their role in phloem transport. Canad J Bot 58: 826–832

    Google Scholar 

  • Behnke H-D (1968) Zum Aufbau gitterartiger Membranstrukturen im Siebelementplasma vonDioscorea. Protoplasma 66: 287–310

    Google Scholar 

  • — (1986) Sieve element characters and the systematic position ofAustrobaileya, Austrobaileyaceae-with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Syst Evol 152: 101–121

    Google Scholar 

  • —(1990 a) Cycads and genetophytes. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 89–101

    Google Scholar 

  • — (1990 b) Sieve elements in internodal and nodal anastomoses of the monocotyledon lianaDioscorea. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 161–178

    Google Scholar 

  • —, Sjolund RD (eds) (1990) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Dörr I (1990) Sieve elements in haustoria of parasitic angiosperms. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 239–256

    Google Scholar 

  • Esau K, Cheadle VI (1959) Size of pores and their contents in sieve elements of dicotyledons. Proc Natl Acad Sci USA 45: 156–162

    Google Scholar 

  • Eschrich W, Eschrich B (1989) II. Phloem transport. In: Behnke H-D, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in botany, vol 51. Springer, Berlin Heidelberg New York Tokyo, pp 80–92

    Google Scholar 

  • Evert RF (1982) Sieve-tube structure in relation to function. Bio Science 32: 789–795

    Google Scholar 

  • — (1990) Seedless vascular plants. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 35–62

    Google Scholar 

  • Fink J, Jeblick W, Blaschek W, Kauss H (1987) Calcium ions and polyamines activate the plasmamembrane-located, 1,3β-glucan synthetase. Planta 171: 130–135

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45: 115–120

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27: 137 A-138 A

    Google Scholar 

  • Kauss H (1987) Callose-Synthese Regulation durch induzierten Ca2+-Einstrom in Pflanzenzellen. Naturwissenschaften 74: 275–281

    Google Scholar 

  • Kollmann R (1973) Cytologie des Phloems. In: Hirsch GC, Ruska H, Sitte P (eds) Grundlagen der Cytologie. Fischer, Jena, pp 479–505

    Google Scholar 

  • —, Schumacher W (1962) Über die Feinstruktur des Phloems vonMetasequoia glyptostroboides und seine jahreszeitlichen Veränderungen II. Vergleichende Untersuchungen der plasmatischen Verbindungsbrücken in Phloemparenchymzellen und Siebzellen. Planta 58: 366–386

    Google Scholar 

  • — — (1963) Über die Feinstruktur des Phloems vonMetasequoia glyptostroboides und seine jahreszeitlichen Veränderungen IV. Weitere Beobachtungen zum Feinbau der Plasmabrücken in den Siebzellen. Planta 60: 360–389

    Google Scholar 

  • Lang A (1979) A relay mechanism for phloem translocation. Ann Bot 44: 141–145

    Google Scholar 

  • — (1983) Turgor-regulated translocation. Plant Cell Environ 6: 683–689

    Google Scholar 

  • Matzke MA, Matzke AJM (1986) Visualization of mitochondria and nuclei in living plant cells by the use of a potential-sensitive fluorescent dye. Plant Cell Environ 9: 73–77

    Google Scholar 

  • Milburn JA, Kallarackal J (1989) Physiological aspects of phloem translocation. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Harlow, pp 264–305

    Google Scholar 

  • Murphy R, Aikmanm DP (1989) An investigation of the relay hypothesis of phloem transport inRicinus communis L. J Exp Bot 40: 1079–1088

    Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Neuberger DS, Evert RF (1975) Structure and development of sieve areas in the hypocotyl ofPinus resinosa. Protoplasma 84: 109–125

    Google Scholar 

  • Quader H (1990) Formation and disintegration of cisternae of the endoplasmic reticulum visualized in live cells by conventional fluorescence and confocal laser scanning microscopy: evidence for the involvement of calcium and the cytoskeleton. Protoplasma 155: 166–175

    Google Scholar 

  • —, Schnepf E (1986) Endoplasmic reticulum and cytoplasmic streaming: fluorescence microscopical observations in adaxial epidermis cells of onion bulb scales. Protoplasma 131: 250–252

    Google Scholar 

  • Sauter JJ (1976) Untersuchungen zur Lokalisierung von Glycerophosphataseund Nucleosidtriphosphatase-Aktivität in Siebzellen von Larix. Z Pflanzenphysiol 79: 254–271

    Google Scholar 

  • — (1977) Electron microscopical localization of adenosin triphosphatase and β-glycerophosphatase in sieve cells ofPinus nigra var.austriaca (Hoess) Badoux. Z Pflanzenphysiol 81: 438–458

    Google Scholar 

  • —, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells (=albuminous cells) in the secondary phloem ofPinus nigra var.austriaca (Hoess) Badoux. Protoplasma 88: 31–49

    Google Scholar 

  • Scheirer DC (1990) Mosses. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 19–33

    Google Scholar 

  • Schulz A (1988) Vascular differentiation in the root cortex of peas: premitotic stages of cytoplasmic reactivation. Protoplasma 143: 176–187

    Google Scholar 

  • — (1990) Conifers. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 63–88

    Google Scholar 

  • —, Behnke H-D (1986) Fluoreszenzund elektronenmikroskopische Beobachtungen am Phloem von Buchen, Fichten und Tannen unterschiedlichen Schädigungsgrades. PEF-Berichte (Kernforschungszentrum Karlsruhe) 4: 79–95

    Google Scholar 

  • Schulz A, Behnke H-D (1987) Feinbau und Differenzierung des Phloems von Buchen, Fichten und Tannen aus Waldschadensgebieten. PEF-Berichte (Kernforschungszentrum Karlsruhe) 16: 1–95

    Google Scholar 

  • —, Alosi MC, Sabnis DD, Park RB (1989) A phloem-specific, lectinlike protein is located in pine sieve-element plastids by immunocytochemistry. Planta 179: 506–515

    Google Scholar 

  • Shotton DM (1989) Confocal scanning optical microscopy and its application for histological specimens. J Cell Sci 94: 175–206

    Google Scholar 

  • Sjolund RD (1990) Sieve elements in tissue cultures: development, freeze-fracture, and isolation. In: Behnke H-D, Sjolund RD (eds) Sieve elements-comparative structure, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 179–198

    Google Scholar 

  • —, Shih CY (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum. J Ultrastruct Res 82: 111–121

    Google Scholar 

  • Terasaki M, Song J, Wong JR, Weiss MJ, Chen LB (1984) Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 38: 101–108

    Google Scholar 

  • Thorsch J, Esau K (1981) Changes in the endoplasmic reticulum during differentiation of a sieve element inGossypium hirsutum. J Ultrastruct Res 74: 183–194

    Google Scholar 

  • Warmbrodt RD, Eschrich W (1985) Studies on the mycorrhizas ofPinus sylvestris L produced in vitro with the basidiomyceteSuillus variegatus (SW ex FR) O. Kuntze. II. Ultrastructural aspects of the endodermis and vascular cylinder of the mycorrhizal rootlets. New Phytol 100: 403–418

    Google Scholar 

  • Weatherley PE (1975 a) Some aspects of the Münch hypothesis. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York, pp 535–555

    Google Scholar 

  • — (1975 b) Summary of the conference. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York, pp 619–624

    Google Scholar 

  • White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging in biological structures by fluorescence light microscopy. J Cell Biol 105: 41–48

    Google Scholar 

  • Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47: 189–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, A. Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166, 153–164 (1992). https://doi.org/10.1007/BF01322778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322778

Keywords

Navigation