Skip to main content
Log in

Glycosylation of human leukocyte interferon: Effects of tunicamycin

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Antiviral activity of interferon secreted by human leukocytes into the culture fluid in the presence of tunicamycin (1–2 µg/ml) was significantly decreased, by 50–60 percent, in comparison to that produced in the absence of the antibiotic. No loss in antiviral activity occurred when tunicamycin was added to already harvested interferon preparations. Some physico-chemical and biological properties of human leukocyte interferon synthesized in the presence of tunicamycin (HL-IFT) were apparently altered by comparison with those of control preparations of human leukocyte interferon (HL-IF): HF-IFT had only one molecular weight component of 16,000 daltons in contrast to the two components of HL-IF of 16,000 and 21,000 daltons. HL-IFT also had a higher apparent hydrophobicity and was less efficiently neutralized by an antibody raised against HL-IF. However, some other properties remained unchanged: isoelectric point, pI about 6; affinity for immobilized polyriboinosinic acid and a spectrum of cross-species antiviral activity. These data support the notion that the major component of HL-IF (70 percent, 16,000 daltons) is apparently nonglycosylated whereas the minor component (30 percent, 21,000 daltons) is glycosylated via saccharide-lipid intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böhlen, P., Steln, S., Dalrman, W., Undenfriend, S.: Fluorimetric assay of proteins in the nanogram range. Arch. Biochem. Biophys.155, 213–220 (1973).

    Google Scholar 

  2. Bose, S., Gurari-Rotman, D., Ruegg, U. Th., Corley, L., Anfinsen, C. B.: Apparent dispensability of the carbohydrate moiety of human interferon for antiviral activity. J. biol. Chem.251, 1659–1662 (1976).

    Google Scholar 

  3. Chadha, K. C., Sclair, M., Sulkowski, E., Carter, W. A.: Molecular size heterogeneity of human leukocyte interferon. Biochem.17, 196–200 (1978).

    Google Scholar 

  4. Chadha, K. C., Grob, P. M.: Affinity of human leukocyte interferon for polyribonucleotides. Cell Biology, International Reports3, 663–669 (1979).

    Google Scholar 

  5. Chen, J. K., Jankowski, W. J., O'Malley, J. A., Sulkowski, E., Carter, W. A.: Nature of the molecular heterogeneity of human leukocyte interferon. J. Virol.19, 425–434 (1976).

    Google Scholar 

  6. Davey, M. W., Huang, J. W., Sulkowski, E., Carter, W. A.: Hydrophobic binding site on human interferon. J. biol. Chem.250, 348–351 (1975).

    Google Scholar 

  7. Davey, M. W., Sulkowski, E., Carter, W. A.: Binding of human fibroblast interferon to concanavalin A-agarose. Involvement of carbohydrate recognition and hydrophobic interaction. Biochem.15, 704–713 (1976).

    Google Scholar 

  8. DeMaeyer-Guignard, J., Thang, M. N., DeMaeyer, E.: Binding of mouse interferon to polynucleotides. Proc. Natl. Acad. Sci. U.S.A.74, 3787–3790 (1977).

    Google Scholar 

  9. Dorner, F., Scriba, M., Well, R.: Interferon: Evidence for its glycoprotein nature. Proc. Natl. Acad. Sci. U.S.A.70, 1981–1985 (1973).

    Google Scholar 

  10. Finter, N. B.: Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. J. gen. Virol.5, 419–427 (1969).

    Google Scholar 

  11. Havell, E. A., Vilček, J., Falcoff, E., Berman, B.: Suppression of human interferon production by inhibitors of glycosylation. Virology63, 475–483 (1975).

    Google Scholar 

  12. Havell, E. A., Yamazaki, S., Vilček, J.: Altered molecular species of human interferon produced in the presence of inhibitors of glycosylation. J. biol. Chem.252, 4425–4427 (1977).

    Google Scholar 

  13. Havell, E. A., Yip, Y. K., Vilček, J.: Correlation of physicochemical and antigenic properties of human leukocyte interferon subspecies. Arch. Virol.55, 121–129 (1977).

    Google Scholar 

  14. Jankowski, W. J., Davey, M. W., O'Malley, J. A., Sulkowski, E., Carter, W. A.: Molecular structure of human fibroblast and leukocyte interferons. Probe by lectin and hydrophobic chromatography. J. Virol.16, 1124–1130 (1975).

    Google Scholar 

  15. Knight, E., Jr.: Interferon: Purification and initial characterization from human diploid cells. Proc. Natl. Acad. Sci. U.S.A.73, 520–523 (1976).

    Google Scholar 

  16. Lin, L. S., Wiranowska-Stewart, M., Chudzio, T., Stewart, W. E., II: Characterization of the heterogeneous molecules of human interferons: differences in cross-species antiviral activities of various molecular populations in human leukocyte interferons. J. gen. Virol.39, 125–130 (1978).

    Google Scholar 

  17. Mizrahi, A., O'Malley, J. A., Carter, W. A., Takatsuki, A., Tamura, G., Sulkowski, E.: Glycosylation of interferons: effect of tunicamycin on human immune interferon. J. biol. Chem.253, 7612–7615 (1978).

    Google Scholar 

  18. Morser, J., Kabayo, J. P., Hutchinson, D. W.: Differences in sialic acid content of human interferons. J. gen. Virol.41, 175–178 (1978).

    Google Scholar 

  19. Olden, K., Pratt, R. M., Yamada, K. M.: Role of carbohydrates in protein secretion and turnover: effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell13, 461–473 (1978).

    Google Scholar 

  20. Pidot, A. L. R., O'Keefe, III, A., McManus, M., McIntyre, O. R.: Human leukocyte interferon: The variation in normals and correlation with PHA transformation. Proc. Soc. exp. Biol. Med.140, 1263–1269 (1972).

    Google Scholar 

  21. Rubinstein, M., Rubinstein, S., Familetti, P. C., Miller, R. S., Waldman, A. A., Pestka, S.: Human leukocyte interferon: production, purification to homogeneity, and initial characterization. Proc. Natl. Acad. Sci. U.S.A.76, 640–644 (1979).

    Google Scholar 

  22. Sklarz, B.: Organic chemistry of periodates. Quant. Rev.21, 3–28 (1967).

    Google Scholar 

  23. Stewart, W. E., II: Purification and characterization of interferons. In:Stewart, W. E., II (ed.), Interferons and Their Actions, 49–72. Cleveland, Ohio: CRC Press 1977.

    Google Scholar 

  24. Stewart, W. E., II, Chudzio, T., Lin, L. S., Wiranowska-Stewart, M.: Interferons:In vitro andin vivo conversion of native interferons to lower molecular weight forms. Proc. Natl. Acad. Sci. U.S.A.75, 4814–4818 (1978).

    Google Scholar 

  25. Stewart, W. E., II., Lin, L. S., Wiranowska-Stewart, M., Cantell, K.: Elimination of the size and charge heterogeneities of human leukocyte interferons by chemical cleavage. Proc. Natl. Acad. Sci. U.S.A.74, 4200–4204 (1977).

    Google Scholar 

  26. Struck, P. K., Lennarz, W. J.: Evidence for the participation of saccharidelipids in the synthesis of the oligosaccharide chain of ovalbumin. J. biol. Chem.252, 1007–1013 (1977).

    Google Scholar 

  27. Takatsuki, A., Kawamura, K., Okina, M., Kodama, Y., Ito, T., Tamura, G.: The structure of tunicamycin. Agric. Biol. Chem.41, 2307–2309 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadha, K.C., Grob, P.M., Hamill, R.L. et al. Glycosylation of human leukocyte interferon: Effects of tunicamycin. Archives of Virology 64, 109–117 (1980). https://doi.org/10.1007/BF01318014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01318014

Keywords

Navigation