Skip to main content
Log in

Theory for the first-order spin-wave instability threshold in ferromagnetic insulating thin films

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A theory for the first-order Suhl and the parallel pumping instability in thin films is presented. Significant differences for the critical microwave field and wave vector to former calculations occur, which discuss the problem in terms of bulk spin-waves neglecting boundary conditions. A coupling matrixC kk′ is introduced, which describes the couplings between the modes and the driving microwave field. For bulk standing spin-wavesC kk′ is always diagonal. For the true discrete standing modes of a thin filmC kk′ changes only in case of 1. Suhl instability and if the wavevector has a non vanishing component perpendicular to the film plane. Here the diagonal bulk couplings have to be replaced in part by off diagonal terms, describing couplings between modes, which perpendicular wave vector componentk differs byπ/d (d=film thickness). The decisive quantity, which decides if the finite thickness of the film is of importance or if the film can be treated as a bulk system, is the frequency difference δω k of the coupled modes. For δω k much smaller than the spin-wave damping η k the bulk approximation is correct. For\(\delta \omega _k > > \eta _k \) two experimental situations for 1. Suhl instability are discussed: For a perpendicular to the film plane magnetized film the critical microwave field is by π/2 bigger than in the bulk case. In an in-plane magnetized film the critical spin-waves propagate always in the film plane, as only hereC kk′ remains identical to the bulk case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suhl, H.: J. Phys. Chem. Solids1, 209 (1975)

    Google Scholar 

  2. Morgenthaler, F.R.: J Appl. Phys.31, 95S (1960)

  3. Schlömann, E., Green, J.J., Milano, U.: J. Appl. Phys.31, 386S (1960)

  4. Damon, R.W.: in: Magnetism, Vol. 1, pp. 551. Rado, G.T., Suhl, H. (eds.). New York: Academic Press 1963

    Google Scholar 

  5. Wigen, P.E., McMichael, R.D., Jayaprakash, C.: J. Mag. Mag. Mat.84, 237 (1990)

    Google Scholar 

  6. Zakharov, V.E., L'vov, V.S., Starobinet, S.S.: Sov. Phys. Usp.17, 896 (1975)

    Google Scholar 

  7. L'vov, V.S., Prozorova, L.A.: In: Spin waves and magnetic excitations, Vol. 1, pp. 233–285. Borovik-Romanov, A.S., Sinha, S.K. (eds.). Amsterdam: Elsevier 1988

    Google Scholar 

  8. Jantz, W., Schneider, J.: Phys. Status Solidi a31, 595 (1975)

    Google Scholar 

  9. Jantz, W., Schneider, J.: Solid State Commun.9, 69 (1971)

    Google Scholar 

  10. Jantz, W., Schneider, J., Andlauer, B.: Solid State Commun.10, 937 (1972)

    Google Scholar 

  11. Gibson, G., Jeffries, C.: Phys. Rev. A29, 811 (1984)

    Google Scholar 

  12. Waldner, F.: Phys. Rev. A31, 420 (1985)

    Google Scholar 

  13. Yamazaki, H., Warden, M.: J. Phys. Soc. Jpn.55, 4477 (1986)

    Google Scholar 

  14. Yamazaki, H., Mino, M.: Prog. Theor. Phys. Suppl.98, 400 (1989)

    Google Scholar 

  15. de Aguiar, F.M., Rezende, S.M.: Phys. Rev. Lett.56, 1070 (1986)

    Google Scholar 

  16. Rezende, S.M., de Aguiar, F.M.: Physica A163, 232 (1990)

    Google Scholar 

  17. de Aguiar, F.M.: Phys. Rev. A40, 7244 (1990)

    Google Scholar 

  18. Caroll, T.L., Pecora, L.M., Rachford, F.J.: Phys. Rev. Lett.59, 2891 (1987)

    Google Scholar 

  19. Caroll, T.L., Rachford, F.J., Pecora, L.M.: Phys. Rev. B38, 2938 (1988)

    Google Scholar 

  20. Caroll, T.L., Pecora, L.M., Rachford, F.J.: J. Appl. Phys.64, 5396 (1988)

    Google Scholar 

  21. Caroll, T.L., Pecora, L.M., Rachford, F.J.: Phys. Rev. A40, 4149 (1989)

    Google Scholar 

  22. Caroll, T.L., Pecora, L.M., Rachford, F.L.: Phys. Rev. B40, 2327 (1989)

    Google Scholar 

  23. Benner, H., Rödelsperger, F., Seitz, H., Wiese, G.: J. Phys. (Paris) Colloque C8,49, 1603 (1988)

    Google Scholar 

  24. McMichael, R.D., Wigen, P.E.: Phys. Rev. Lett.64, 64 (1990)

    Google Scholar 

  25. Warden, M., Waldner, F.: J. Appl. Phys.64, 5387 (1988)

    Google Scholar 

  26. Bryant, P.H., Jeffries, C.D., Nakamura, K.: Phys. Rev A38, 4223 (1988)

    Google Scholar 

  27. Caroll, T.L., Pecora, L.M., Rachford, F.J.: Phys. Rev. A40, 377 (1989)

    Google Scholar 

  28. Wiese, G., Benner, H.: Z. Phys. B79, 119 (1990)

    Google Scholar 

  29. Bryant, P.H.: Phys. Rev. B39, 4363 (1989)

    Google Scholar 

  30. Wiese, G.: Z. Phys. B82, 453 (1991)

    Google Scholar 

  31. Chem, M., Patton, C.E.: J. Appl. Phys.60, 5724 (1991)

    Google Scholar 

  32. Patton, C.E.: J. Appl. Phys.40, 2837 (1969)

    Google Scholar 

  33. Kittel, C.: Phys. Rev.73, 155 (1948)

    Google Scholar 

  34. Damon, R.W., Eshbach, J.R.: J. Phys. Chem. Solids19, 308 (1961)

    Google Scholar 

  35. Walker, L.R.: Phys. Rev.105, 390 (1957)

    Google Scholar 

  36. Akhiezer, A.I., Bar'yakhar, V.G., Peletminskii, S.V.: Spin waves. Amsterdam: North-Holland 1969

    Google Scholar 

  37. Wilber, W.D., Booth, J.G., Patton, C.E., Srinivasan, G., Cross, R.W.: J. Appl. Phys.64, 5477 (1988)

    Google Scholar 

  38. Wiese, G., Kabos, P., Patton, C.E.: J. Appl. Phys. (to be published)

  39. Liu, Y.H., Patton, C.E.: J. Appl. Phys.53, 5116 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, G. Theory for the first-order spin-wave instability threshold in ferromagnetic insulating thin films. Z. Physik B - Condensed Matter 91, 57–64 (1993). https://doi.org/10.1007/BF01316709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01316709

Keywords

Navigation