Skip to main content
Log in

On the description of atomic motions in dense fluids by the generalized Langevin equation: statistical properties of random forces

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The suitability of the generalized Langevin equation (GLE) for a realistic description of the behavior of a system of interacting particles in solution is discussed. This study is focused on the GLE for a system of non-Brownian particles, i.e., the masses and the sizes of the solute particles are similar to those of the bath particles. The random and frictional forces on the atoms of the solute due to their collisions with the solvent atoms are characterized from molecular dynamics simulations of simple dense liquid mixtures. The required effective memory functions, which are dependent on the concentration of solute, are obtained by solving a generalized Volterra equation. The validity of the usual assumptions on the statistical properties of the random forces is carefully analyzed, paying special attention to their Gaussianity. The reliability of stochastic simulations based on the GLE is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Turq, F. Lantelme, and H. L. Friedman,J. Chem. Phys. 66:3039 (1977).

    Google Scholar 

  2. M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids (Clarendon Press, Oxford, 1987), Chapter 9.

    Google Scholar 

  3. H. L. Friedman,A Course in Statistical Mechanics (Prentice Hall, New Jersey, 1985), Chapter 4.

    Google Scholar 

  4. J. M. Deutch and I. Oppenheim,J. Chem. Phys. 54:3547 (1971);Faraday Disc. Chem. Soc. 83:1 (1987).

    Google Scholar 

  5. H. Mori,Prog. Theor. Phys. 33:423 (1965);34:399 (1965).

    Google Scholar 

  6. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976), Chapter 11.

    Google Scholar 

  7. G. Ciccotti and J. P. Ryckaert,J. Stat. Phys. 26:73 (1981).

    Google Scholar 

  8. F. J. Vesely and H. A. Posch,Mol. Phys. 64:97 (1988).

    Google Scholar 

  9. G. Bossis, B. Quentrec, and J. P. Boon,Mol. Phys. 45:191 (1982).

    Google Scholar 

  10. E. Guàrdia, J. L. Gómez-Estévez, and J. A. Padró,J. Chem. Phys. 86:6438 (1987).

    Google Scholar 

  11. J. A. Padró, E. Guàrdia, and G. Sesé,Mol. Phys. 63:355 (1988).

    Google Scholar 

  12. M. Canales and J. A. Padró,Mol. Simul. 1:403 (1988).

    Google Scholar 

  13. J. A. Padró and M. Canales,Mol. Phys. 68:423 (1989).

    Google Scholar 

  14. B. J. Berne and G. D. Harp,Adv. Chem. Phys. 17:63 (1970).

    Google Scholar 

  15. U. Balucani, V. Tognetti, R. Vallauri, P. Grigolini, and P. Marin,Z. Phys. B. 49:181 (1982).

    Google Scholar 

  16. R. Zwanzig,Annu. Rev. Phys. Chem. 16:67 (1965).

    Google Scholar 

  17. R. Vogelsang and C. Hoheisel,J. Stat. Phys. 47:193 (1987).

    Google Scholar 

  18. R. Vogelsang and C. Hoheisel,J. Stat. Phys. 54:315 (1989).

    Google Scholar 

  19. P. G. Wolynes,Annu. Rev. Phys. Chem. 31:345 (1980).

    Google Scholar 

  20. J. P. Bergsma, J. R. Reimers, K. R. Wilson, and J. T. Hynes,J. Chem. Phys. 85:5625 (1986).

    Google Scholar 

  21. M. A. Wilson, A. Pohorille, and L. R. Pratt,J. Chem. Phys. 83:5382 (1985).

    Google Scholar 

  22. M. Berkowitz and W. Wan,J. Chem. Phys. 86:376 (1987).

    Google Scholar 

  23. H. A. Posch, U. Balucani, and R. Vallauri,Physica 123A:516 (1984).

    Google Scholar 

  24. E. Guàrdia and J. A. Padró,J. Chem. Phys. 83:1917 (1985).

    Google Scholar 

  25. F. J. Vesely,Mol. Phys. 53:505 (1984).

    Google Scholar 

  26. W. F. van Gunsteren and H. J. C. Berendsen,Mol. Phys. 47:721 (1982).

    Google Scholar 

  27. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, London, 1986), Chapter 7.

    Google Scholar 

  28. M. Ferrario, P. Grigolini, A. Tani, R. Vallauri, and B. Zambon,Adv. Chem. Phys. 62:389 (1985); D. Bertolini, M. Casserattari, P. Grigolini, G. Salvetti, and A. Tani,J. Mol. Liquids 41:251 (1989).

    Google Scholar 

  29. D. Beeman,J. Comput. Phys. 20:130 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sesé, G., Guàrdia, E. & Padró, J.A. On the description of atomic motions in dense fluids by the generalized Langevin equation: statistical properties of random forces. J Stat Phys 60, 501–518 (1990). https://doi.org/10.1007/BF01314933

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314933

Key words

Navigation