Skip to main content
Log in

UV-B protecting compounds in the marine algaPhaeocystis pouchetii from Antarctica

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Phaeocystis pouchetii (Hariot) Lagerheim is widely distributed in polar waters, and forms massive near-surface blooms in the marginal ice-edge zone around Antarctica during spring and summer. UV irradiance in the Antarctic marine environment is reportedly as high in October and November as in mid-summer due to stratospheric ozone depletion. Because of the location and timing of theP. pouchetii bloom, this prymnesiophyte will be exposed to high levels of UV-B (280 to 320 nm) radiation. Colourless water-soluble compounds, produced by the colonial stage in the life cycle of this alga, absorb strongly between 250 and 370 nm, with absorbance maxima at 271 and 323 nm. The concentration of these compounds in culturedP. pouchetii depends on the strain, stage in the life cycle, and presence of bacteria. As well as conferring substantial protection to this alga, these substances may also provide UV protection to other organisms present in the water column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Caldwell, M. M. (1981). Plant responses to solar ultraviolet radiation. In: Lange, O. L., Nobel, P. S., Osmond, C. B., Ziegler, H. (eds.) Encyclopedia of plant physiology. New series. Physiological plant ecology. 1. Springer-Verlag, New York, p. 169–197

    Google Scholar 

  • Calkins, J., Thordardottir, T. (1980). The ecological significance of solar UV radiation on aquatic organisms. Nature, Lond. 283: 563–566

    Google Scholar 

  • Carreto, J. I., Carignan, M. O., Daleo, G., De Marco, S. G. (1990). Occurrence of mycosporine-like amino acids in the red-tide dinoflagellateAlexandrium excavatum: UV-photoprotective compounds? J. Plankton Res. 12: 909–921

    Google Scholar 

  • Davidson, A. T., Marchant, H. J. (1987). Binding of manganese by AntarcticPhaeocystis pouchetii and the role of bacteria in its release. Mar. Biol. 95: 481–487

    Google Scholar 

  • Davidson, A. T., Marchant, H. J. (1991). Protist interactions and carbon concentration during aPhaeocystis-dominated bloom at an Antarctic coastal site. (in preparation)

  • Dunlap, W. C., Chalker, B. E., Oliver, J. K. (1986). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J. exp. mar. Biol. Ecol. 104: 239–248

    Google Scholar 

  • Dunlap, W. C., Williams, D. McB., Chalker, B. E., Banaszak, A. T. (1989). Biochemical photoadaptation in vision; U.V.-absorbing pigments in fish eye tissues. Comp. Biochem. Physiol. 93B: 601–607

    Google Scholar 

  • Frederick, J. E., Snell, H. E. (1988). Ultraviolet radiation levels during the antarctic spring. Science, N.Y. 241: 438–440

    Google Scholar 

  • Fryxell, G. A., Kendrick, G. A. (1988). Austral spring microalgae across the Weddell Sea ice edge; spatial relationships found along a northward transect during AMERIEZ 83. Deep-Sea Res. 35: 1–20

    Google Scholar 

  • Garrison, D. L., Buck, K. R., Fryxell, G. A. (1987). Algal assemblages in the antarctic pack ice and in ice-edge plankton. J. Phycol. 23: 564–572

    Google Scholar 

  • Hardy, J., Gucinski, H. (1989). Stratospheric ozone depletion: implications for marine ecosystems. Oceanography, Wash. 2: 18–21

    Google Scholar 

  • Jacka, T. H. (1983). A computer data base for Antarctic sea ice extent. A.N.A.R.E. Res. Notes 13: 1–54

    Google Scholar 

  • Jerlov, N. G. (1950). Ultra-violet radiation in the sea. Nature, Lond. 166: 111–112

    Google Scholar 

  • Loeblich, A. R. III, Smith, V. E. (1968). Chloroplast pigments of the marine dinoflagellateGymnodinium resplendens. Lipids 3: 3–15

    Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophylla and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–347

    Google Scholar 

  • Maske, H. (1984). Daylight ultraviolet radiation and the photoinhibition of phytoplankton carbon uptake. J. Plankton Res. 6: 351–357

    Google Scholar 

  • Roberts, L. (1989). Does the ozone hole threaten antarctic life? Science, N.Y. 244: 288–289

    Google Scholar 

  • Scherer, S., Chen, T. W., Böger, P. (1988). A new UV-A/B protecting pigment in the terrestrial cyanobacteriumNostoc commune. Pl. Physiol. 88: 1055–1057

    Google Scholar 

  • Shibata, K. (1969). Pigments and UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Pl. Cell Physiol., Kyoto 10: 325–335

    Google Scholar 

  • Sieburth, J. McN. (1960). Acrylic acid, an “antibiotic” principle inPhaeocystis blooms in Antarctic waters. Science, N.Y. 132: 676–677

    Google Scholar 

  • Sivalingam, P. H., Ikawa, T., Yokohama, Y., Nisizawa, K. (1974). Distribution of 334 UV-absorbing-substances in the algae, with special regard of its possible physiological roles. Botanica mar. 17: 23–29

    Google Scholar 

  • Smith, R. C., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem. Photobiol. 29: 311–323

    Google Scholar 

  • Smith, R. C., Baker, K. S. (1989). Stratospheric ozone, middle ultraviolet radiation and phytoplankton productivity. Oceanography, Wash. 2: 4–10

    Google Scholar 

  • Smith, W. O., Jr. (1987). Phytoplankton dynamics in marginal ice zones. Oceanogr. mar. Biol. A. Rev. 25: 11–38

    Google Scholar 

  • Verity, P. G., Villareal, T. A., Smayda, T. J. (1988). Ecological investigations of blooms of colonialPhaeocystis pouchetii — I. Abundance, biochemical composition, and metabolic rates. J. Plankton Res. 10: 219–248

    Google Scholar 

  • Vincent, W. F. (1988). Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Voytek, M. A. (1990). Addressing the biological effects of decreased ozone on the Antarctic environment. Ambio 19: 52–61

    Google Scholar 

  • Wood, W. F. (1989). Photoadaptive responses of the tropical red algaEucheuma striatum Schmitz (Gigartinales) to ultra-violet radiation. Aquat. Bot. 33: 41–51

    Google Scholar 

  • Worrest, R. C. (1983). Impact of solar ultraviolet-B radiation (290–320 nm) upon marine microalgae. Physiologia Pl. 58: 428–434

    Google Scholar 

  • Wright, S. W., Shearer, J. D. (1984). Rapid extraction and high performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J. Chromat. 294: 281–296

    Google Scholar 

  • Yentsch, C. S., Yentsch, C. M. (1982). The attenuation of light by marine phytoplankton with special reference to the absorption of near-UV radiation. In: Calkins, J. (ed.) The role of solar ultraviolet radiation in marine ecosystems. Plenum, New York, p. 691–706

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis. 2nd ed. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchant, H.J., Davidson, A.T. & Kelly, G.J. UV-B protecting compounds in the marine algaPhaeocystis pouchetii from Antarctica. Mar. Biol. 109, 391–395 (1991). https://doi.org/10.1007/BF01313504

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313504

Keywords

Navigation