Skip to main content
Log in

Viscoelasticity of a Fermi liquid

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Infinite homogeneous Fermi systems in the degenerate regime are described by the Uehling-Uhlenbeck equation. The eigenvalue problem associated with the linearized collision operator is solved analytically. Initial value problems are studied with the help of the spectral representation of the time evolution operator. The dynamic transport coefficients of the system can then be calculated in the framework of linear response theory. As an example the viscoelastic behaviour of the Fermi liquid is related to the relaxation of a quadrupole deformation in momentum space. In this connection also the coupling of the driving field to 2p-2h excitations will be discussed. The theory is applied to normal liquid3He and to nuclear matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vogel, J., Vogel, E., Toepffer, C.: Relaxation in a Fermi liquid. Ann. Phys. (NY) (to be published)

  2. Rudnik, J.: J. Low Temp. Phys.40, 287 (1980)

    Google Scholar 

  3. Bedell, K., Pethick, C.J.: J. Low Temp. Phys.49, 213 (1982)

    Google Scholar 

  4. Nettleton, R.E.: J. Low Temp. Phys.22, 407 (1976)

    Google Scholar 

  5. Wölfle, P.: In: Progress in low temperature physics. Brewer, D.F. (ed.), Vol. VII. Amsterdam, Oxford, New York: North Holland 1978

    Google Scholar 

  6. Serene, J.W., Rainer, J.: Phys. Rep.101, No 4 (1983)

    Google Scholar 

  7. Landau, L.D.: Sov. Phys. JETP3, 920 (1957)

    Google Scholar 

  8. Lifshitz, E.M., Pitaevskii, L.P.: In: Physical kinetics. Course of theoretical physics. Vol. X, Sects. 74–75. Oxford: Pergamon Press 1981

    Google Scholar 

  9. Uehling, E.A., Uhlenbeck, G.E.: Phys. Rev.43, 552 (1933)

    Google Scholar 

  10. Toepffer, C., Wong, C.Y.: Phys. Rev.126, 1901 (1982)

    Google Scholar 

  11. Toepffer, C.: Z. Phys. A — Atoms and Nuclei305, 263 (1982)

    Google Scholar 

  12. Hess, S., Köhler, W.: Formeln zur Tensor-Rechnung. Erlangen: Palm und Enke 1980

    Google Scholar 

  13. Morel, P., Nozières, P.: Phys. Rev.126, 1901 (1962)

    Google Scholar 

  14. Brooker, G.A., Sykes, J.: Ann. Phys. (NY)74, 67 (1972)

    Google Scholar 

  15. Landau, L.D.: Sov. Phys. JETP5, 101 (1957)

    Google Scholar 

  16. Metropolis, N., Bivins, R., Storm, M., Turkevich, A., Miller, T.M., Friedlander, G.: Phys. Rev.110, 185 (1958)

    Google Scholar 

  17. Bennemann, K.H., Ketterson, J.B.: The physics of liquid and solid helium. Part II. New York: John Wiley & Sons Inc. 1978

    Google Scholar 

  18. Sykes, J., Brooker, G.A.: Ann. Phys. (NY)56, 1 (1970)

    Google Scholar 

  19. Abrikosov, A.A., Khalatnikov, I.M.: Rep. Prog. Phys.22, 329 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, J., Vogel, E., Hess, S. et al. Viscoelasticity of a Fermi liquid. Z. Physik B - Condensed Matter 60, 19–29 (1985). https://doi.org/10.1007/BF01312639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312639

Keywords

Navigation