Skip to main content
Log in

Real analytic curves in Fréchet spaces and their duals

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The following results are presented: 1) a characterization through the Liouville property of those Stein manifoldsU such that every germ of holomorphic functions on ℝ xU can be developed locally as a vector-valued Taylor series in the first variable with values inH(U); 2) ifT μ is a surjective convolution operator on the space of scalar-valued real analytic functions, one can find a solutionu of the equationT μ u=f which depends holomorphically on the parameterz∈ℂ wheneverf depends in the same manner. These results are obtained as an application of a thorough study of vector-valued real analytic maps by means of the modern functional analytic tools. In particular, we give a tensor product representation and a characterization of those Fréchet spaces or LB-spacesE for whichE-valued real analytic functions defined via composition with functionals and via suitably convergent Taylor series are the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexiewicz A, Orlicz W (1951) On analytic vector-valued functions of a real variable. Studia Math12: 108–111

    Google Scholar 

  2. Bierstedt KD (1988) An introduction to locally convex inductive limits. In:Hogbe-Nlend H (ed) Functional Analysis and its Applications, pp 35–133 Singapore: World Scientific

    Google Scholar 

  3. Bierstedt KD, Bonet J (1989) Projective description of weighted inductive limits: the vectorvalued case. In:Terzioĝlu T (ed) Advances in the Theory of Fréchet spaces, pp 195–221 Dodrecht: Kluwer

    Google Scholar 

  4. Bierstedt KD, Meise R, Summers WH (1982) A projective description of weighted inductive limits. Trans Amer Math Soc272: 107–160

    Google Scholar 

  5. Bierstedt KD, Meise R, Summers WH (1982) Köthe sets and Köthe sequence spaces. In:Barroso J (ed) Functional Analysis, Holomorphy and Approximation Theory, pp 27–91. Amsterdam: North-Holland

    Google Scholar 

  6. Bochnak J, Siciak J (1971) Analytic functions in topological vector spaces. Studia Math39: 77–111

    Google Scholar 

  7. Braun R (1996) Surjectivity of partial differential operators on Gevrey classes. In:Dierolf S, Domański P, Dineen S (eds) Functional Analysis, Proc of the First International Workshop held at Trier University, pp 69–80. Berlin: Walter de Gruyter

    Google Scholar 

  8. Braun R, Meise R, Vogt D (1989) Applications of the projective limit functor to convolution and partial differential equations. In:Terzioĝlu T (ed) Advances in the Theory of Fréchet Spaces, pp 29–46. Dordrecht: Kluwer

    Google Scholar 

  9. Braun R, Meise R, Vogt D (1994) Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type on ℝ. Math Nach168: 19–54

    Google Scholar 

  10. Braun R, Vogt D (1997) A sufficient condition for Proj1 X. Mich Math J44: 149–156

    Google Scholar 

  11. Dunford N (1938) Uniformity in linear spaces. Trans Amer Math Soc44: 305–356

    Google Scholar 

  12. Frerick L, Wengenroth J (1996) A sufficient condition for vanishing of the derived projective limit functor. Arch Math67: 296–301

    Google Scholar 

  13. Gramsch B (1975) Inversion von Fredholmfunktionen bei stetiger und holomorpher Abhängigkeit von Parametern. Math Ann214: 95–147

    Google Scholar 

  14. Gramsch B, Kaballo W (1980) Spectral theory for Fredholm functions In:Bierstedt KD, Fuchssteiner B (eds) Functional Analysis: Surveys and Recent Results II, pp 319–342 Amsterdam: North-Holland

    Google Scholar 

  15. Grothendieck A (1953) Sur certains espaces de functions holomorphes, I, II. J Reine Angew Math192: 35–64, 77–95

    Google Scholar 

  16. Grothendieck A (1955) Produits tensoriels topologiques et espaces nucléaires. Mem Amer Math Soc16

  17. Hörmander L (1973) On the existence of real analytic solutions of partial differential equations with constant coefficients. Invent Math21: 151–182

    Google Scholar 

  18. Hörmander L (1979) An Introduction to Complex Analysis in Several Variables, 2nd ed. Amsterdam: North-Holland

    Google Scholar 

  19. Jarchow H (1981) Locally Convex Spaces, Teubner BG Stuttgart

    Google Scholar 

  20. Krantz S, Parks HR (1992) A Primer of Real Analytic Functions. Basel: Birkhäuser

    Google Scholar 

  21. Köthe G (1969, 1979) Topological Vector Spaces I and II. Berlin: Springer

    Google Scholar 

  22. Kriegl A, Michor PW (1990) The convenient setting for real analytic mappings. Acta Math165: 105–159

    Google Scholar 

  23. Kriegl A, Nel LD (1985) A convenient setting for holomorphy. Cahiers Topologie Géom Diff26: 273–309

    Google Scholar 

  24. Langenbruch M (1994) Continuous linear right inverses for convolution operators in spaces of real analytic functions. Studia Math110: 65–82

    Google Scholar 

  25. Langenbruch M (1995) Hyperfunction fundamental solutions of surjective convolution operators on real analytic functions. J Funct Anal131: 78–93

    Google Scholar 

  26. Leiterer J (1978) Banach coherent analytic Fréchet sheaves. Math Nachr85: 91–109

    Google Scholar 

  27. Mangino E (1995) Complete projective tensor product of LB-spaces. Arch Math64: 33–41

    Google Scholar 

  28. Mantlik F (1991) Partial differential operators depending analytically on a parameter. Ann Inst Fourier (Grenoble)41: 577–599

    Google Scholar 

  29. Mantlik F (1992) Fundamental solutions or hypoelliptic differential operators depending analytically on a parameter. Trans Amer Math Soc334: 245–257

    Google Scholar 

  30. Martineau A (1963) Sur les fonctionelles analytiques et la transformation de Fourier-Borel. J Analyse Math11: 1–164

    Google Scholar 

  31. Martineau A (1966) Sur la topologie des espaces de fonctions holomorphes. Math Ann163: 62–88

    Google Scholar 

  32. Mattes J (1993) On the convenient setting for real analytic mappings. Math116: 127–141

    Google Scholar 

  33. Meise R (1985) Sequence space representations for (DFN)-algebras of entire functions modulo closed ideal. J Reine Angew Math363: 59–95

    Google Scholar 

  34. Meise R, Vogt D (1992) Einführung in die Funktionalanalysis. Braunschweing: Vieweg

    Google Scholar 

  35. Palamodov VP (1968) Functor of projective limit in the category of topological vector spaces. Mat Sb75: 567–603 (in Russian); English transl., Math USSR Sbornik17: 289–315

    Google Scholar 

  36. Palamodov VP (1971) Homological methods in the theory of locally convex spaces. Uspekhi Mat Nauk26(1): 3–66 (in Russian); English transl., Russian Math Surveys26(1): 1–64 (1971)

    Google Scholar 

  37. Perez-Carreras P, Bonet J (1987) Barrelled Locally Convex Spaces Amsterdam: North-Holland

    Google Scholar 

  38. Retakh VS (1970) Subspaces of a countable inductive limit. Doklady AN SSSR194(6): (in Russian); English transl., Soviet Math Dokl11: 1384–1386 (1970)

    Google Scholar 

  39. Slodkowski Z (1986) Operators with closed ranges in spaces of analytic vector-valued functions. J Funcl Anal69: 155–177

    Google Scholar 

  40. Tillmann HG (1953) Randverteilungen analytischer Funktionen und Distributionen. Math Z,59: 61–83

    Google Scholar 

  41. Vogt D (1975) Vektorvertige Distributionen als Randverteilungen holomorpher Funktionen. Manuscripta Math17: 267–290

    Google Scholar 

  42. Vogt D (1983) On the solvability ofP(D)f=g for vector valued functions. RIMS Kokyoroku508: 168–181

    Google Scholar 

  43. Vogt D (1983) Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist. J Reine Angew Math345: 182–200

    Google Scholar 

  44. Vogt D (1984) Some results on continuous linear maps between Fréchet spaces. In:Bierstedt KD, Fuchssteiner B (eds) Functional Analysis: Surveys and Recent Results III, pp 349–381 Amsterdam: North-Holland

    Google Scholar 

  45. Vogt D (1985) On two classes of (F)-spaces. Arch Math45: 255–266

    Google Scholar 

  46. Vogt D (1987) On the functor Ext1 (E, F) for Fréchet spaces. Studia Math85: 163–197

    Google Scholar 

  47. Vogt D (1987) Lectures on projective spectra of DF-spaces. Seminar lectures, AG Funktionalanalysis, Düsseldorf/Wuppertal

    Google Scholar 

  48. Vogt D (1989) Topics on projective spectra of LB-spaces. In:Terzioĝlu T (ed) Advances in the Theory of Fréchet Spaces, pp 11–27 Dordrecht: Kluwer

    Google Scholar 

  49. Wengenroth J (1996) Acyclic inductive spectra of Fréchet spaces. Studia Math120: 247–258

    Google Scholar 

  50. Wengenroth J (1998) A new characterization of Proj1=0 Proc Amer Math Soc (to appear)

  51. Zaharjuta VP (1994) Spaces of analytic functions and complex potential theory. In:Aytuna A (ed), Linear Topological Spaces and Complex Analysis 1, pp 74–146 Ankara: Metu-Tübitak

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonet, J., Domański, P. Real analytic curves in Fréchet spaces and their duals. Monatshefte für Mathematik 126, 13–36 (1998). https://doi.org/10.1007/BF01312453

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312453

1991 Mathematics Subject Classification

Key words

Navigation