Skip to main content
Log in

Holomorphic Continuation of Functions along a Fixed Direction (Survey)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this article, we give an overview of the most significant and important results on holomorphic extensions of functions along a fixed direction. We discuss the following geometric questions of multidimensional complex analysis:

• holomorphic extension along a bundle of complex straight line, the Forelly theorem;

• holomorphic continuation of functions with thin singularities along a fixed direction;

• holomorphic continuation of functions along a family of analytic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

sReferences

  1. B. I. Abdullayev, “Subharmonic functions on complex Hyperplanes of ℂn,” Zhurn. SFU. Ser. Mat. Fiz., 6, No. 4, 409–416 (2013).

    Google Scholar 

  2. B. I. Abdullayev, “\(\mathcal{P}\)-measure in the class of m – wsh functions,” Zhurn. SFU. Ser. Mat. Fiz., 7, No. 1, 3–9 (2014).

  3. B. I. Abdullaev and A. Sadullaev, “Potential theory in the class of m-subharmonic functions,” Tr. MIAN, 279, 166–192 (2012).

    MathSciNet  Google Scholar 

  4. B. I. Abdullaev and A. Sadullaev, “Capacities and Hessians in the class of m-subharmonic functions,” Dokl. RAN, 448, No. 5, 1–3 (2013).

    Google Scholar 

  5. H. Alexander, “Projective capacity,” Ann. Math. Stud., 100, No. 1, 3–27 (1981).

    MathSciNet  Google Scholar 

  6. A. A. Atamuratov, “On meromorphic continuation along a fixed direction,” Mat. Zametki, 86, No. 3, 323–327 (2009).

    MathSciNet  Google Scholar 

  7. A. A. Atamuratov and M. D. Vaisova, “On the meromorphic extension along the complex lines,” TWMS J. Pure Appl. Math., 2, No. 1, 10–16 (2011).

    MathSciNet  Google Scholar 

  8. E. Bedford, “Survey of pluripotential theory, several complex variable,” Math. Notes, 38, 48–95 (1993).

    Google Scholar 

  9. E. Bedford and B. A. Taylor, “A new capacity for plurisubharmonic functions,” Acta Math., 149, No. 1-2, 1–40 (1982).

    Article  MathSciNet  Google Scholar 

  10. Z. Blocki, “Weak solutions to the complex Hessian equation,” Ann. Inst. Fourier, 5, 1735–1756 (2005).

    Article  MathSciNet  Google Scholar 

  11. T. Bloom and N. Levenberg, “Weighted pluripotential theory in ℂN,” Am. J. Math., 125, No. 1, 57–103 (2003).

    Article  MathSciNet  Google Scholar 

  12. U. Cegrell, “The general definition of the complex Monge–Amp`ere operator,” Ann. Inst. Fourier, 54, 159–179 (2004).

    Article  Google Scholar 

  13. E. Chirka, “Variation of Hartogs’ theorem,” Tr. MIAN, 253, 232–240 (2006).

    MathSciNet  Google Scholar 

  14. D. Coman, V. Guedj, and A. Zeriahi, “Domains of definition of Monge–Ampère operators on compact Kahler manifolds,” Math. Z., 259, 393–418 (2008).

    Article  MathSciNet  Google Scholar 

  15. S. Dinew and S. Kolodziej, “A priori estimates for the complex Hessian equation,” Anal. PDE, 7, 227–244 (2014).

    Article  MathSciNet  Google Scholar 

  16. F. Forelly, “Plurisubharmonicity in terms of harmonic slices,” Math. Scand., 41, 358–364 (1977).

    Article  MathSciNet  Google Scholar 

  17. S. A. Imomkulov, “On the holomorphic continuation of functions defined on the boundary pencil of complex lines,” Izv. RAN. Ser. Mat., 69, No. 2, 125–144 (2005).

    MathSciNet  Google Scholar 

  18. J.-C. Joo, K.-T. Kim, and G. Schmalz, “A generalization of Forelli’s theorem,” Math. Ann., 355, 1171–1176 (2013).

    Article  MathSciNet  Google Scholar 

  19. J.-C. Joo, K.-T. Kim, and G. Schmalz, “On the generalization of Forelli’s theorem,” Math. Ann., 365, 1187–1200 (2016).

    Article  MathSciNet  Google Scholar 

  20. G. Khudayberganov, “On the polynomial and rational convexity of the union of compact sets in ℂn,” Izv. Vuzov. Ser. Mat., No. 2, 70–74 (1987).

  21. G. Khudaiberganov, “On the homogeneous-polynomially convex hull of balls,” Pliska Stud. Math. Bulgar., 10, 45–49 (1989).

    MathSciNet  Google Scholar 

  22. K.-T. Kim, E. Poletsky, and G. Schmalz, “Functions holomorphic along holomorphic vector fields,” J. Geom. Anal., 19, 655–666 (2009).

    Article  MathSciNet  Google Scholar 

  23. M. Klimek, Pluripotential Theory, Clarendon Press, Oxford etc. (1991).

    Book  Google Scholar 

  24. A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds,” Usp. Mat. Nauk, 36, No. 4, 35–105 (1981).

    MathSciNet  Google Scholar 

  25. A. Sadullaev, “Plurisubharmonic functions,” Sovrem. Probl. Mat. Fundam. Napravl., 8, 65–113 (1985).

    MathSciNet  Google Scholar 

  26. A. Sadullaev, “On pluriharmonic continuation along a fixed direction,” Mat. Sb., 196, 145–156 (2005).

    Google Scholar 

  27. A. Sadullaev, Theory of Pluripotential. Applications [in Russian], Palmarium Academic Publishing, Riga (2012).

  28. A. Sadullaev and E. M. Chirka, “On the continuation of functions with polar singularities,” Mat. Sb., 132, No. 3, 383–390 (1987).

    Google Scholar 

  29. A. Sadullaev and S. A. Imomkulov, “Extension of pluriharmonic functions with discrete singularities on parallel sections,” Vestn. Krasnoyarsk. Gos. Un-ta, No. 5/2, 3–6 (2004).

  30. A. Sadullaev and S. A. Imomkulov, “Extension of holomorphic and pluriharmonic functions with fine singularities on parallel sections,” Tr. MIAN, 253, 158–174 (2006).

    Google Scholar 

  31. A. Sadullaev and T. Tuychiev, “On extension of the Hartogs series admitting holomorphic extension to parallel sections,” Uzb. Mat. Zh., No. 1, 148–157 (2009).

  32. J. Siciak, “Extremal plurisubharmonic functios in ℂn,” Ann. Polon. Math., 39, 175–211 (1981).

    Article  MathSciNet  Google Scholar 

  33. T. Tuychiev, “On domains of convergence of multidimensional locunary series,” Zhurn. SFU. Ser. Mat. Fiz., 12, No. 6, 736–746 (2019).

    MathSciNet  Google Scholar 

  34. T. Tuychiev and J. Tishabaev, “On the continuation of the Hartogs series with holomorphic coefficients,” Bull. Natl. Univ. Uzbekistan. Math. Nat. Sci., 2, No. 1, 69–76 (2019).

    Article  Google Scholar 

  35. V. P. Zakharyuta, “Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernstein–Wolsh theorem for analytic functions of several complex variables,” Ann. Polon. Math., 33, 137–148 (1976).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sadullaev.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 68, No. 1, Science — Technology — Education — Mathematics — Medicine, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadullaev, A.S. Holomorphic Continuation of Functions along a Fixed Direction (Survey). J Math Sci 278, 675–690 (2024). https://doi.org/10.1007/s10958-024-06948-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06948-x

Keywords

Navigation