Skip to main content
Log in

Decreasing of the initial shear modulus with increasing axial strain explained by means of a plastic-hypoelastic model

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The purpose of this work is to examine in detail the possibility to explain the decreasing of the initial shear modulus with increasing axial strain, observed first by Feigen, by means of the plastic-hypoelastic stress-strain relation suggested by Lehmann and by the author of the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ɛ ij :

components of the infinitesimal strain tensor dilatation

\(\varepsilon '_{ij} = \varepsilon ij - \frac{1}{3}\theta \delta _{ij} \) :

strain deviator

σ ij :

components of the stress tensor

θ:

spherical part of the stress tensor

\(\sigma '_{ij} = \sigma _{ij} - \frac{1}{3}\Theta \delta _{\iota j} \) :

stress deviator

τ 2=σ ij σ ij :

second invariant of the stress deviator

ɛ=ɛ 33 :

axial strain

e=ɛ 13 :

shear component of the strain tensor

γ=2ɛ 13 :

shear strain

σ=σ 33 :

axial stress

s=σ 13 :

shear stress

T ij :

components of Cauchy's stress tensor

F ij :

components of the deformation gradient

L ij :

components of the velocity gradient (Eulerian coordinates)

\(D_{ij} = \frac{1}{2}(L_{ij} + L_{ji} )\) :

components of the rate of deformation tensor

\(W_{ij} = \frac{1}{2}(L_{ij} - L_{ji} )\) :

components of the spin tensor

\(d_{ij} = D_{ij} - \frac{1}{3}D_{kk} \delta _{ij} \) :

components of the rate of deformations deviator

\(t_{ij} = T_{ij} - \frac{1}{3}T_{kk} \delta _{ij} \) :

components of Cauchy's stress deviator

T=T 33 :

axial Cauchy's stress

References

  1. Hill, R.: The mathematical theory of plasticity, Oxford 1971.

  2. Naghdi, P. M.: Stress-strain relations in plasticity and thermoplasticity. In: Plasticity (Lee, E. H., Symonds, P. S., eds.). Pergamon Press 1960.

  3. Ziegler, H.: An attempt to generalize Onsager's principle and its significance for rheological problems. ZAMP9, 748–763 (1958).

    Google Scholar 

  4. Ziegler, H.: An introduction to thermomechanics. Amsterdam-New York: Oxford 1977.

    Google Scholar 

  5. Lode, W.: Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Z. Physik36, 913–939 (1962).

    Google Scholar 

  6. Taylor, G. I., Quinney, H.: The plastic distorsion of metals. Phil. Trans. Roy. Soc. (London)A 230, 323–362 (1931).

    Google Scholar 

  7. Feigen, M.: Inelastic behaviour under combined torsion. Proc. sec. U.S.-Nat. Congress of Appl. Mech., pp. 459–467 (1954)

  8. Hecker, F. W.: Die Wirkung des Bauschinger-Effectes bei großen Torsion-Formänderungen. Dissertation TU Hannover 1967.

  9. Moon, H.: An experimental study of the outer yield surface for annealed polycrystallin aluminium. Acta Mechanica24, 191–208 (1976).

    Google Scholar 

  10. Ohashi, Y., Tokuda, M.: Precise measurement of plastic behaviour of mild steel tubular specimens subjected to combined torsion and axial forces. J. Mech. Phys. Solids21, 241–261 (1973).

    Google Scholar 

  11. Blix, U.: Vergleich verschiedener Formänderungsgesetze der Plastizitätstheorie, Thesis, Ruhr-Universität Bochum, 1979.

  12. Handelman, G. H., Lin, C. C., Prager, W.: On the mechanical behaviour of metals in the strain-hardening range. Quarterly Appl. Math.4, 397–407 (1946).

    Google Scholar 

  13. Lehmann, Th.: Zur Beschreibung großer plastischer Formänderungen unter Berücksichtigung der Werkstoffverfestigung. Rheol. Acta2, 247–254 (1962).

    Google Scholar 

  14. Mazilu, P.: A note on the constitutive law of plastic flow. Arch. Mech.26, 321–326 (1974)

    Google Scholar 

  15. Lehmann, Th.: On constitutive relations in thermoplasticity. Preprint, Bochum, 1980.

  16. Bell, J. F.: A physical basis for continuum theories of finite strain plasticity: Part II. Arch. Rat. Mech. Anal.75, 103–126 (1981).

    Google Scholar 

  17. Green, A. E.: Hypoelasticity and plasticity. Proc. Roy. S. (London)A 234, 45–49 (1956).

    Google Scholar 

  18. Mazilu, P.: On a differential constitutive law. Rev. Roumaine de Math. Pures et Appl.19, 205–208 (1974).

    Google Scholar 

  19. Damm, U., Mazilu, P.: Some studies to Feigen's experiment. Internal Report of the Institute of Mechanics, Ruhr-Universität, Bochum.

  20. Mazilu, P.: Verringerung des Anfang-Schubmoduls mit zunehmender axialer Dehnung erklärt mit Hilfe eines plasto-hypoelastischen Models. ZAMM64, T139-T141 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazilu, P. Decreasing of the initial shear modulus with increasing axial strain explained by means of a plastic-hypoelastic model. Acta Mechanica 56, 93–115 (1985). https://doi.org/10.1007/BF01306026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01306026

Keywords

Navigation