Skip to main content
Log in

Influence of viscosity variation on the stationary Bénard-Marangoni instability with a boundary slab of finite conductivity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The onset of stationary Bénard-Marangoni instability in a variable-viscosity fluid layer with a boundary slab of finite conductivity is studied. The relations of the viscosity and surface tension of the fluid with the temperature are exponential and linear, respectively. The asymptotic solutions of the long wavelength, for small values of the conductivity and thickness of the solid, are achieved and are very well compared with the numerical results. As the viscosity ratio increases, the validity of the asymptotical solutions is extended for cases of larger values of the thermal conductivity and thickness ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

wave number

B :

viscosity parameter

Bi:

Biot number,qd l /k l

d l :

thickness of fluid layer

d r :

depth ratio,d s /d l

d s :

thickness of solid layer

D f :

thermal diffusivity of fluid

D s :

thermal diffusivity of solid layer

g :

gravitational acceleration

k:

unit vector in thez-direction

k l :

thermal conductivity of fluid

k r :

thermal conductivity ratio,k s /k l

k s :

thermal conductivity of solid layer

M:

Marangoni number, τΔT l d l 0 D f

P :

pressure

Pr:

Prandtl number,v 0/D f

q :

heat transfer coefficient

R:

Rayleigh number, αgΔT l d 3 l /v 0 D f

t :

time

T l :

temperature of fluid

T s :

temperature of solid plate

T 0 :

reference temperature

ω:

nondimensional velocity in thez-direction

W :

eigenfunction ofw component

x, y, z :

Cartesian coordinates

α:

thermal expansion coefficient of the fluid density

γ:

surface tension

Γ:

parameter,M/R

ΔT l :

difference of temperature across the fluid layer

θ:

perturbed temperature

Θ:

eigenfunction of temperature

μ:

dynamic viscosity of fluid

ν:

kinematic viscosity of fluid

ϱ:

density of fluid

τ:

negative rate of change of the surface tension, −∂γ/∂T l

ω:

complex growth rate of disturbances

c :

critical state

l :

property of the liquid

r :

ratio of the solid plate property to the liquid property

s :

property of the solid plate

References

  1. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Oxford: Oxford University Press 1961.

    Google Scholar 

  2. Sparrow, E. M., Goldstein, R. J., Jonsson, V. K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech.18, 513–528 (1964).

    Google Scholar 

  3. Nield, D. A.: The Rayleigh-Jeffreys problem with boundary slab of finite conductivity. J. Fluid Mech.32, 393–398 (1968).

    Google Scholar 

  4. Catton, I., Lienhard, J. H. V.: Thermal stability of two fluid layers separated by a solid interlayer of finite thickness and thermal conductivity. ASME J. Heat Transfer106, 605–612 (1984).

    Google Scholar 

  5. Lienhard, J. H. V.: An improved approach to conductive boundary conditions for the Rayleigh-Bénard instability. ASME J. Heat Transfer109, 378–387 (1987).

    Google Scholar 

  6. Yang, H. Q.: Thermal instability and heat transfer in a multi-layer system subjected to uniform heat flux from below. Int. J. Heat Mass Transfer34, 1707–1715 (1991).

    Google Scholar 

  7. Pearson, J. R. A.: On convection cells induced by surface tension. J. Fluid Mech.4, 489–500 (1958).

    Google Scholar 

  8. Nield, D. A.: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech.19, 341–352 (1964).

    Google Scholar 

  9. Vidal, A., Acrivos, A.: Nature of the neutral state in surface-tension driven convection. Phys. Fluids9, 615–616 (1966).

    Google Scholar 

  10. Takashima, M.: Nature of the neutral state in convective instability induced by surface tension and buoyancy. J. Phys. Soc. Jpn.28, 810 (1970).

    Google Scholar 

  11. Yang, H. Q.: Boundary effect on the Bénard-Marangoni instability. Int. J. Heat Mass Transfer35, 2413–2420 (1992).

    Google Scholar 

  12. Torrance, K. E., Turcotte, D. L.: Thermal convection with large viscosity variations. J. Fluid Mech.47, 113–125 (1971).

    Google Scholar 

  13. Booker, J. R.: Thermal convection with strongly temperature-dependent viscosity. J. Fluid Mech.76, 741–754 (1976).

    Google Scholar 

  14. Booker, J. R., Stengel, K. C.: Further thoughts on convective heat transport in a variable-viscosity fluid. J. Fluid Mech.86, 289–291 (1978).

    Google Scholar 

  15. Richter, F. M.: Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature. J. Fluid Mech.89, 553–560 (1978).

    Google Scholar 

  16. Stengel, K. C., Oliver, D. S., Booker, J. R.: Onset of convection in a variable-viscosity fluid. J. Fluid Mech.120, 411–431 (1982).

    Google Scholar 

  17. Richter, F. M., Nataf, H. C., Daly, S. F.: Heat transfer and horizontally averaged temperature of convection with large viscosity variations. J. Fluid Mech.129, 173–192 (1983).

    Google Scholar 

  18. Pellew, A., Southwell, R. V.: On maintained convective motion in a fluid heated from below. Proc. R. Soc. London Ser.A176, 312–343 (1940).

    Google Scholar 

  19. Nield, D. A.: Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech.81, 513–522 (1977).

    Google Scholar 

  20. Garcia-Ybarra, P. L., Castillo, J. L., Velarde, M. G.: Bénard-Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids30, 2655–2661 (1987).

    Google Scholar 

  21. Yang, H. Q., Yang, K. T.: Benard-Marangoni instability in a two-layer system with uniform heat flux. J. Thermophys.4, 73–78 (1990).

    Google Scholar 

  22. Nield, D. A.: The thermohaline Rayleigh-Jeffreys problem. J. Fluid Mech.29, 545–558 (1967).

    Google Scholar 

  23. Scriven, L. E., Sternling, C. V.: On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech.19, 321–340 (1964).

    Google Scholar 

  24. Smith, K. A.: On convective instability induced by surface-tension gradients. J. Fluid Mech.24, 401–414 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Char, M.I., Chen, C.C. Influence of viscosity variation on the stationary Bénard-Marangoni instability with a boundary slab of finite conductivity. Acta Mechanica 135, 181–198 (1999). https://doi.org/10.1007/BF01305751

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01305751

Keywords

Navigation