Skip to main content
Log in

Electronic structure and bonding in metal hydrides, studied with photoelectron spectroscopy

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We present photoemission spectra of various binary and ternary metal hydrides and of some intermetallic compounds. An analysis of these data with respect to the known heats of hydrogen solution in the metals demonstrates two important properties of the metal-hydrogen bond: First we find that core level, shifts in ternary systems are not simply related to those in binary ones. In contrast to a frequently used assumption, metal-hydrogen interaction in a ternary hydride cannot be a pair interaction between the atomic constituents. Secondly, we find from our studies of the valence band spectra of some intermetallic compounds an inverse correlation between the heat of hydrogen solution and the density of states at the Fermi level.

We analyse the core level shift data from binary hydrides using the experimental heats of hydrogen solution. We find a very good agreement between calculated and measured core level shifts in transition metal hydrides. However, in rare earth hydrides our approach fails. The reason for this behaviour originates in the photoemission process itself. A thermochemical interpretation of core level shifts can only be successful in the adiabatic limit of core excitation. The systematic behaviour of our results can be explained, if core excitation is considered to be adiabatic in transition metal hydrides but sudden in the rare earth hydrides. We also discuss the impact of such an interpretation on the concepts of adiabatic and sudden core excitation in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham, T.: Philos. Trans. R. Soc. (London)156, 415 (1866)

    Google Scholar 

  2. Hydrogen in metals I/II. In: Topics in Applied Physics. Alefeld, G., Völkl, J. (eds.), Vols. 28/29. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  3. Hydrogen in intermetallic compounds. In: Topics in Applied Physics. Schlapbach, L. (ed.). Berlin, Heidelberg, New York: Springer 1987 (in preparation)

    Google Scholar 

  4. Schlapbach, L.: In: Hydrogen in disordered and amorphous solids. Bambakidis, G., Bowman, R.C., (eds.), p. 397. New York: Plenum Press 1986

    Google Scholar 

  5. Rieder, K.H., Stocker, W.: Surf. Sci.164, 55 (1985)

    Google Scholar 

  6. Osterwalder, J.: Z. Phys. B-Condensed Matter61, 113 (1985)

    Google Scholar 

  7. Osterwalder, J., Riesterer, T., Schlapbach, L., Vaillant, F., Fruchart, D.: Phys. Rev. B31, 8311 (1985)

    Google Scholar 

  8. Verbruggen, A.H., Griessen, R., Rector, J.H.: Phys. Rev. Lett.52, 1625 (1984)

    Google Scholar 

  9. Suzuki, T., Namazue, H., Koike, S., Hayakawa, H.: Phys. Rev. Lett.51, 798 (1983)

    Google Scholar 

  10. Fukai, Y.: Jpn. J. Appl. Phys.23, L596 (1984)

    Google Scholar 

  11. Schlapbach, L., Burger, J.P., Thiry, P., Bonnet, J., Petroff, Y.: Phys. Rev. Lett.57, 2219 (1986)

    Google Scholar 

  12. Schlapbach, L., Hüfner, S., Riesterer, T.: J. Phys. C19, L63 (1986)

    Google Scholar 

  13. Lacher, J.R.: Proc. R. Soc. (London) Ser. A161, 525 (1937)

    Google Scholar 

  14. Alefeld, G.: Phys. Status Solidi32, 67 (1969)

    Google Scholar 

  15. Fenzl, W., Peisl, J.: Phys. Rev. Lett.54, 2064 (1985)

    Google Scholar 

  16. Griessen, R., Riesterer, T.: In Ref. 3

    Google Scholar 

  17. Solid state theory is not yet at a level which would allow for an exact treatment of alloy formation

  18. Gupta, M., Schlapbach, L.: In Ref. 3

    Google Scholar 

  19. Gupta, M.: In: The electronic structure of complex systems. Phariseau, P., Temmerman, W.M. (eds.), p. 243. New York: Plenum Press 1984

    Google Scholar 

  20. Manninen, M., Nørskov, J.K.: In The chemical physics of solvation A. Ulstrup, J., Kálmán, E., Dogonadze, R.R., Kornyshey, A.A. (eds.) Amsterdam: Elsevier (in preparation)

  21. We neglect in the discussion of these effects the dissociation energy of the H2 molecule. Where necessary this energy of 2.26 eV/atom will of course be included

  22. Gelatt, C.D., Jr., Ehrenreich, H., Weiss, J.A.: Phys. Rev. B17, 1940 (1978)

    Google Scholar 

  23. Williams, A.R., Kübler, J., Gelatt, C.D., Jr.: Phys. Rev. B19, 6094 (1979)

    Google Scholar 

  24. Johansson, B., Mårtensson, N.: Phys. Rev. B21, 4427 (1980)

    Google Scholar 

  25. Denninger, G., Dose, V., Scheidt, H.: Appl. Phys.18, 375 (1979)

    Google Scholar 

  26. Thanks to S. Fries, Saarbrücken, for performing the analysis

  27. Pebler, A., Gulbransen, E.A.: Electrochem. Technol.4, 211 (1966)

    Google Scholar 

  28. Essen, R.M. van, Buschow, K.H.J.: J. Less-Common Met.64, 277 (1979)

    Google Scholar 

  29. Schlapbach, L., Pina-Petez, C., Siegrist, T.: Solid State Commun.41, 135 (1982)

    Google Scholar 

  30. Krause, M.O., Ferreira, J.G.: J. Phys. B8, 2007 (1975)

    Google Scholar 

  31. Schlapbach, L., Burger, J.P.: J. Phys. (Paris) Lett.43, L273 (1982)

    Google Scholar 

  32. Bennet, P.A., Fuggle, J.C.: Phys. Rev. B26, 6030 (1982)

    Google Scholar 

  33. Riesterer, T., Osterwalder, J., Schlapbach, L.: Phys. Rev. B32, 8405 (1985)

    Google Scholar 

  34. Doniach, S., Šunjič, M.: J. Phys. C3, 285 (1970)

    Google Scholar 

  35. Wertheim, G.K., Citrin, P.H.: Photoemission in solids I. In: Topics in Applied Physics. Cardona, M., Ley, L. (eds.), Vol. 26, P. 197 Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  36. Folmer, J.C.W., Boer, D.K.G. de: Solid State Commun.38, 1135 (1981)

    Google Scholar 

  37. Wicke, E., Brodowsky, H.: In Ref. 2, Vol. 2, p. 73

    Google Scholar 

  38. Belin, E., Schlapbach, L., Gupta, M.: J. Phys. F13, L193 (1983)

    Google Scholar 

  39. Chan, C.T., Louie, S.G.: Phys. Rev. B27, 3325 (1983)

    Google Scholar 

  40. Papaconstantopoulos, D.A., Klein, B.M., Economou, E.N., Boyer, L.L.: Phys. Rev. B17, 141 (1978)

    Google Scholar 

  41. Papaconstantopoulos, D.A.: In: Metal hydrides. Bambakidis, G. (ed.), p. 215. New York: Plenum Press 1981

    Google Scholar 

  42. Nordlander, P., Holloway, S., Nørskov, J.K.: Surf. Sci.136, 59 (1984)

    Google Scholar 

  43. Manson, S.T.: In Ref. 35

    Google Scholar 

  44. Weaver, J.H., Peterson, D.T., Benbow, R.L.: Phys. Rev. B20, 5301 (1979)

    Google Scholar 

  45. Weaver, J.H., Peterman, D.J., Peterson, D.T. Franciosi, A.: Phys. Rev. B23, 1692 (1981)

    Google Scholar 

  46. Lamartine, B.C., Haas, T.W., Solomon, J.S.: Appl. Surf. Sci.4, 537 (1980).

    Google Scholar 

  47. Peterman, D.J., Misemer, D.K., Weaver, J.H., Peterson, D.T.: Phys. Rev. B27, 799 (1983)

    Google Scholar 

  48. Fujimori, A., Schlapbach, L.: J. Phys. C17, 341 (1984)

    Google Scholar 

  49. Veal, B.W., Lam, D.J., Westlake, D.G.: Phys. Rev. B19, 2856 (1979)

    Google Scholar 

  50. Sasaki, T.A., Baba, Y.: Phys. Rev. B31, 791 (1985)

    Google Scholar 

  51. Cardona, M., Ley, L.: In Ref. 35

    Google Scholar 

  52. Mårtensson, N., Johansson, B.: Solid State Commun.32, 791 (1979)

    Google Scholar 

  53. Steiner, P., Hüfner, S., Mårtensson, N., Johansson, B.: Solid State Commun.37, 73 (1981)

    Google Scholar 

  54. Steiner, P., Hüfner, S.: Acta Metall.29, 1885 (1981); Steiner, P.: CALPHAD8, 153 (1984)

    Google Scholar 

  55. Koopmans, T.: Physica1, 104 (1934)

    Google Scholar 

  56. Verbeek, B.H.: Solid State Commun.44, 951 (1982)

    Google Scholar 

  57. Miedema, A.R.: J. Less-Common Met.32, 117 (1973)

    Google Scholar 

  58. Miedema, A.R., Boer, F.R. de, Boom, R.: Physica103B, 67 (1981)

    Google Scholar 

  59. Niessen, A.K., Boer, F.R. de, Boom, R., Châtel, P.F. de, Mattens, W.C.M., Miedema, A.R.: CALPHAD7, 51 (1983)

    Google Scholar 

  60. Carlson, T.A., Krause, M.O.: Phys. Rev.140, A1057 (1965)

    Google Scholar 

  61. Thomas, T.D.: Phys. Rev. Lett.52, 417 (1984)

    Google Scholar 

  62. Gadzuk, J.W., Šunjič, M.: Phys. Rev. B12, 524 (1975)

    Google Scholar 

  63. Gadzuk, J.W.: Photoemission from surfaces Feuerbacher, B., Fitton, B., Willis, R.F. (eds.), p. 111: New York: Wiley 1977

    Google Scholar 

  64. Fuggle, J.C., Lässer, R., Gunnarsson, O., Schönhammer, K.: Phys. Rev. Lett.44, 1090 (1980)

    Google Scholar 

  65. For rare earth elements: Gerken, F., Flodström, A.S., Barth, J., Johansson, L.I., Kunz, C.: Phys. Scr.32, 43 (1985)

    Google Scholar 

  66. For5d elements: Rosengren, A.: Phys. Rev. B24, 7393 (1981)

    Google Scholar 

  67. Martin, R.L., Shirley, D.A.: Phys. Rev. A13, 1475 (1976)

    Google Scholar 

  68. Kanski, J., Wendin, G.: Phys. Rev. B24, 4977 (1981)

    Google Scholar 

  69. Machlin, E.S.: J. Less-Common Met.64, 1 (1979)

    Google Scholar 

  70. Mal, H.H. van, Buschow, K.H.J., Miedema, A.R.: J. Less-Common Met.35, 65 (1974)

    Google Scholar 

  71. Miedema, A.R., Buschow, K.H.J., Mal, H.H. van: J. Less-Common Met.49 463 (1976)

    Google Scholar 

  72. Shinar, J., Jacob, I., Davidov, D., Shaltiel, D.:Hydrides for energy storage. Andresen, A.F., Maeland, A.J., (eds.), p. 337. Oxford: Pergamon Press 1978

    Google Scholar 

  73. Jacob, I., Shaltiel, D.: J. Less-Common Met.65, 117 (1979)

    Google Scholar 

  74. Didisheim, J.-J., Yvon, K., Fischer, P., Shaltiel, D.: J. Less-Common Met.73, 355 (1980)

    Google Scholar 

  75. Westlake, D.G.: J. Less-Common Met.90, 251 (1983)

    Google Scholar 

  76. Griessen, R., Driessen, A.: Phys. Rev. B30, 4372 (1984)

    Google Scholar 

  77. For a review of the results emerging from this model see Ref. 16

    Google Scholar 

  78. Feenstra, R.: Ph.d. thesis, Vrije Universiteit Amsterdam, 1985 (unpublished)

  79. The Zr 3d core level shifts (and binding energies) in the hydrides of Zr2Ni, Zr2Co and ZrCo are very close to the values for ZrH2. Our X-ray analysis of the hydrides (see Sect. 2) as well as the interpretation of the Ni 2p satellite (unpublished) do, however, exclude a disproportionation into ZrH2 and, e.g., ZrNi.

  80. Teisseron, G., Vuillet, P., Schlapbach, L.: J. Less-Common Met. (in press)

  81. Fries, S.M., Wagner, H.-G., Campbell, S.J., Gonser, U., Blaes, N., Steiner, P.: J. Phys. F15, 1179 (1985)

    Google Scholar 

  82. Riesterer, T., Kofel, P., Osterwalder, J., Schlapbach, L.: J. Less-Common Met.101, 221 (1984)

    Google Scholar 

  83. For a tabulation of structural data from ternary systems see: Yvon, K., Fischer, P.: In Ref. 3

    Google Scholar 

  84. Riesterer, T.: J. Less-Common Met.103, 219 (1984)

    Google Scholar 

  85. Gupta, M.: Solid State Commun.42, 501 (1982)

    Google Scholar 

  86. Papaconstantopoulos, D.A., Switendick, A.C.: Phys. Rev. B32, 1289 (1985)

    Google Scholar 

  87. Riesterer, T.: (unpublished). An expression corresponding to equation (5) in a ternary system can be found by imposing the limiting binary cases to behave according to Eq. (5). For an approach according to Eq. (8) we have to introduce a mean field approximation to treat the ternary case.

  88. Scofield, J.H.: J. Electron Spectrosc.8, 129 (1976)

    Google Scholar 

  89. Klein, B.M., Pickett, W.E., Papaconstantopoulos, D.A., Boyer, L.L.: Phys. Rev. B27, 6721 (1983)

    Google Scholar 

  90. Maeland, A.J., Libowitz, J.J.: J. Less-Common Met.74, 295 (1980)

    Google Scholar 

  91. Steiner, P., Schmidt, M., Hüfner, S.: Solid State Commun.35, 493 (1980)

    Google Scholar 

  92. Oelhafen, P., Hauser, E., Güntherodt, H.J., Bennemann, K.H.: Phys. Rev. Lett.43, 1134 (1979)

    Google Scholar 

  93. Harris, J., Andersson, S.: Phys. Rev. Lett.55, 1583 (1985)

    Google Scholar 

  94. Feenstra, R., Groot, D.G. de, Griessen, R., Burger, J.P., Menovski, A.: J. Less-Common Met. (in press)

  95. Baer, Y., Ott, H.R., Andres, K.: Solid State Commun.36, 387 (1980)

    Google Scholar 

  96. Fuggle, J.C., Hillebrecht, F.U., Zeller, R., Zolnierek, Z., Bennett, P.A., Freiburg, Ch.: Phys. Rev. B27, 2145 (1982)

    Google Scholar 

  97. Mårtensson, N., Nyholm, R., Calén, H., Hedman, J., Johansson, B.: Phys. Rev. B24, 1725 (1981)

    Google Scholar 

  98. Nørskov, J.K.: Phys. Rev. B26, 2875 (1982);28, 1138 (1983)

    Google Scholar 

  99. Puska, M.J., Nieminen, R.M., Manninen, M.: Phys. Rev. B24, 3037 (1981)

    Google Scholar 

  100. Perrot, F., Rasolt, M.: Phys. Rev. B25, 7331 (1982)

    Google Scholar 

  101. Griessen, R., Feenstra, R.: J. Phys. F15, 1013 (1985)

    Google Scholar 

  102. Oates, W.A., Flanagan, T.B.: Prog. Solid State Chem.13, 193 (1981)

    Google Scholar 

  103. Yoshihara, M., McLellan, R.B.: J. Less-Commun Met.107, 267 (1985)

    Google Scholar 

  104. Feenstra, R., Griessen, R., Groot, D.G. de: J. Phys. F16, 1933 (1986)

    Google Scholar 

  105. Feenstra, R., Griessen, R.: J. Less-Commun Met. (in press)

  106. Shaltiel, D.: Private communication

  107. Gyoffry, B.L., Pindor, A., Temmermann, W.M.: Phys. Rev. Lett.43, 1343 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riesterer, T. Electronic structure and bonding in metal hydrides, studied with photoelectron spectroscopy. Z. Physik B - Condensed Matter 66, 441–458 (1987). https://doi.org/10.1007/BF01303894

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303894

Keywords

Navigation