Skip to main content
Log in

Interaction of protons in metallic hydrogen

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The three-particle interaction of protons in metallic hydrogen has been investigated in detail for the first time. It has been shown that this interaction is determined by the third-order perturbation-theory term in the potential of the electron-proton interaction for the energy of conduction electrons in the field of protons. It has been shown that the three-particle interaction for the majority of configurations of protons is small compared to the effective pairwise interaction, but for some configurations, it significantly exceeds the latter. It follows from the calculations performed that the three-particle interaction tends to compress hydrogen to larger densities than those produced by the pairwise effective interaction. The maximum depth of the potential well for the three-particle interaction of protons corresponds to the location of protons on a common straight line, which can be interpreted as a tendency to the formation of a cubic lattice in the metallic state. The liquid-metal state of hydrogen can be stable at temperatures that significantly exceed room temperature. The three-particle interaction also favors the transition of hydrogen into an atomic state as an intermediate state between its molecular and metallic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, “Extreme states of matter on Earth and in space,” Phys.-Usp. 52, 615–647 (2009)

    Article  Google Scholar 

  2. V. E. Fortov, “Intense shock waves and extreme states of matter,” Phys.-Usp. 50, 333–353 (2007).

    Article  Google Scholar 

  3. E. G. Maksimov and Yu. T. Shilov, “Hydrogen at high pressure,” Phys.-Usp. 42, 1121–1138 (1999).

    Article  Google Scholar 

  4. W. J. Nellis, “Dynamic compression of materials: Metallization of fluid hydrogen at high pressure,” Rep. Prog. Phys. 69, 1479–1580 (2006).

    Article  Google Scholar 

  5. S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860–1863 (1996).

    Article  Google Scholar 

  6. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, “Electrical conductivity of nonideal hydrogen plasma at megabar dynamic pressures,” JETP Lett. 69, 926–931 (1999).

    Article  Google Scholar 

  7. V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, “Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa,” Physica B 265, 6–11 (1999).

    Article  Google Scholar 

  8. M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).

    Article  Google Scholar 

  9. R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, “Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluids,” Phys. Rev. Lett. 90, 245501 (2003).

    Article  Google Scholar 

  10. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, “Measurement of quasi-isentropic compressibility of helium and deuterium at pressures of 1500–2000 GPa,” J. Exp. Theor. Phys. 115, 614–625 (2012).

    Article  Google Scholar 

  11. V. T. Shvets’, S. V. Dats’ko, and E. K. Malinovs’kii, “Thermodynamic properties of metallic hydrogen,” Ukr. Fiz. Zh. 58(1), 72–77 (2007).

    Google Scholar 

  12. V. T. Shvets, “Electrical conductivity of metallic hydrogen in the nearly-free-electron model,” Phys. Met. Metallogr. 103, 330–336 (2007).

    Article  Google Scholar 

  13. V. T. Shvets, “High temperature equation of state of metallic hydrogen,” J. Exp. Theor. Phys. 114, 655–660 (2007).

    Article  Google Scholar 

  14. V. T. Shvets, “Metallization degree of hydrogen at a pressure of 1.4 Mbar and a temperature of 3000 K,” JETP Lett. 86, 552–555 (2007).

    Article  Google Scholar 

  15. V. T. Shvets, “Electrical conductivity of metallic hydrogen as of a ternary system,” High Temp. 46, 194–198 (2008).

    Article  Google Scholar 

  16. V. T. Shvets and A. S. Vlasenko, “Metal-dielectric transition in hydrogen,” Acta Phys. Polonica 114, 851–858 (2008).

    Google Scholar 

  17. M. Hasegawa, “Third-order perturbation theory and structures of liquid metals: Sodium and potassium,” J. Phys. F: Metal Phys. 6, 649–675 (1976).

    Article  Google Scholar 

  18. S. D. Kaim, N. P. Kovalenko, and E. V. Vasiliu, “Manyparticle interactions and local structure of the metallic hydrogen at zero pressure,” J. Phys. Studies 1, 589–595 (1997).

    Google Scholar 

  19. V. T. Shvets’ and S. V. Kozits’kii, “Effective pairwise interionic interaction in metallic hydrogen and helium,” Metallofiz. Noveish. Tekhnol. 33, 1199–1208 (2011).

    Google Scholar 

  20. V. T. Shvets, “Effective proton—proton interaction and metallization of hydrogen,” JETP Lett. 95, 29–32 (2012).

    Article  Google Scholar 

  21. E. G. Brovman, Yu. Kagan, and A. O. Kholas, “Structure of metallic hydrogen at zero pressure,” Zh. Eksp. Teor. Fiz. 61, 2429–2458 (1971).

    Google Scholar 

  22. E. G. Brovman and Yu. M. Kagan, “Phonons in nontransition metals” Sov. Phys. Usp. 17, 125–152 (1974).

    Article  Google Scholar 

  23. V. T. Shvets, Physics of Non-Ordered Metals (Mayak, Odessa, 2007), [in Russian].

    Google Scholar 

  24. V. T. Shvets and S. V. Kozitskii, Metallization of Hydrogen and Helium (ONMA, Odessa, 2013), [in Russian].

    Google Scholar 

  25. V. V. Kechin, “Melting of metallic hydrogen at high pressures,” JETP Lett. 79, 40–43 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Shvets.

Additional information

Original Russian Text © V.T. Shvets, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 4, pp. 348–355.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvets, V.T. Interaction of protons in metallic hydrogen. Phys. Metals Metallogr. 116, 328–335 (2015). https://doi.org/10.1134/S0031918X1502012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1502012X

Keywords

Navigation