Skip to main content

Advertisement

Log in

3. Ursachen und Therapie von Organversagen: Mediatoren, ihr Stellenwert und therapeutische Implikationen am Beispiel des septischen Patienten

Mediators in sepsis: Pathogenetic role and therapeutical implications

  • B. Wissenschaftliches Programm
  • I. Hauptthemen A. Chirurgische Intensivmedizin — Ursachen und Therapie von Organversagen
  • Published:
Langenbecks Archiv für Chirurgie Aims and scope Submit manuscript

Summary

Mediators from the coagulation system, the complement system, the kallikrein-kinin system and the arachidonic acid metabolism are made responsible for the pathogenesis of organ failure (ARDS) following sepsis. Products from these systems influence, directly or indirectly, vascular tone and permeability, especially in the pulmonary circulation. Besides these mediators, toxic oxygen species and proteases released from activated granulocytes and macrophages injure endothelial cells and provoke vascular leakage.

Zusammenfassung

Für die Entwicklung von Organkomplikationen im Rahmen einer Sepsis werden Mediatoren aus dem Gerinnungs-, dem Komplement-, dem Kallikrein-Kinin-System und aus dem Arachidonsäure-Metabolismus verantwortlich gemacht. Produkte aus diesen Systemen beeinflussen teils direkt, teils indirekt über Zielzellen, den Gefässtonus und die Gefässpermeabilität vor allem in der Lungenstrombahn. Neben diesen Mediatoren wirken insbesondere die aus aktivierten Granulocyten und Makrophagen liberierten toxischen Sauerstoffprodukte und Proteasen endothelschädigend und permeabilitätssteigernd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Baird BR, Cheronis JC, Sandhaus RA, Berger EM, White CW, Repine JE (1986) O2, metabolites and neutrophil elastase synergistically cause edematous injury in isolated rat lungs. J Appl Physiol 61:2224–2229

    Google Scholar 

  2. Barnhart MI, Chien S (1978) Platelet-vessel wall dynamics. Thromb Haemost 63:301–317

    Google Scholar 

  3. Brigham KL, Meyrick B (1984) Interactions of granulocytes with the lungs. Circ Res 54:623–635

    Google Scholar 

  4. Cohen AB (1979) The effects in vivo and in vitro of oxidative damage to purified a,-antitrypsin and to the enzyme-inhibiting activity of plasma. Am Rev Respir Dis 1219:953–960

    Google Scholar 

  5. Colman RW, Osbahr AJ, Morris RE (1967) New vasoconstrictor, bovine peptide B, released during blood coagulation. Nature 215:292–293

    Google Scholar 

  6. Fletcher JR, Ramwell PW, Herman CM (1976) Prostaglandins and the hemodynamic course of entotoxin shock. J Surg Res 20:589

    Google Scholar 

  7. Fritz H, Jochum M, Duswald KH, Dittmer H, Kortmann H (1984) Granulocyte proteinases as mediators of unspecific proteolysis in inflammation: A review. In: Goldberg DM, Werner M (eds) Selected topics in clinical enzymology, Vol 2. de Gruyter, Berlin, pp 305–328

    Google Scholar 

  8. Gerdin B, Belew M, Lindquist O, Saldeen T (1979) Effect of fibrin derived peptide on pulmonary microvascular permeability. In: Saldeen T (ed) The microembolism syndrome. Almquist and Wiksell, Stockholm, pp 233–239

    Google Scholar 

  9. Johnson D, Travis J (1979) The oxidative inactivation of human a,-proteinase inhibitor. J Biol Chem 254:4022–4026

    Google Scholar 

  10. Lough J, Moore S (1975) Endothelial injury induced by thrombin or thrombi. Lab Invest 33:130–135

    Google Scholar 

  11. Manwarning D, Curreri PW (1982) Platelet and neutrophil sequestration after fragment D-induced respiratory distress. Circ Shock 9:75–80

    Google Scholar 

  12. McDonald JA, Baum BJ, Rosenberg DM, Kelman JA, Brin SC, Crystal RG (1979) Destruction of a major extracellular adhesive glycoprotein (fibronectin) of human fibroblasts by neutral proteases from polymorphonuclear leukocyte granules. Lab Invest 40:350–357

    Google Scholar 

  13. Mittermayer Ch, Riede UN, Bleyl U, Herzog H, von Wichert P, Riesner K (1978) Schocklunge. Verh Dtsch Ges Pathol 62:11–65

    Google Scholar 

  14. Neuhof H (1984) Zur pathogenetischen Bedeutung der klassischen Kaskadensysteme und des Arachidonsäure-Metabolismus. Med Welt 35:1457–1462

    Google Scholar 

  15. Neuhof H, Seeger W, Wolf HRD (1986) Generation of mediators by limited proteolysis during blood coagulation and fibrinolysis - its pathogenetic role in the adult respiratory distress syndrome (ARDS). Resuscitation 14:23–32

    Google Scholar 

  16. Neuhof H (1987) Mediatoren in der Pathogenese des akuten Atemnotsyndroms (ARDS). In: Lawin P (Hrsg) Aktuelle Aspekte und Trends der respiratorischen Therapie. Springer, Berlin, pp 87 -100

    Google Scholar 

  17. Oettinger W, Seifert J (1982) Pathophysiologische Bedeutung der Prostanoide im septischen Schock. Fortschr Med 46:21–69

    Google Scholar 

  18. Ogletree ML, Brigham KL (1979) Indomethacin augments endotoxin induced increased lung vascular permeability in sheep. Rev Respir Dis 119:383

    Google Scholar 

  19. Riede UN, Mittermayer Ch, Rohrbach R, Joh K, Vogel W, Fringes B (1982) Mikrothrombosierung der Endostrombahn als Ursache schockbedingter Organkomplikationen (unter besonderer Berücksichtigung der Schocklunge). Haemostasiologie 2:3–24

    Google Scholar 

  20. Rietschel ET, Zähringer U, Wollenweber H-W, Miragliotta G, Musehold J, Lüderitz T, Schade U (1984) Bacterial endotoxins: chemical structure and biologic activity. Am J Emerg Med 2:60

    Google Scholar 

  21. Schlag GH, Redl H (1980) Die Leukostase in der Lunge beim hypovoldmisch-traumatischen Schock. Anaesthesist 29:606–612

    Google Scholar 

  22. Seeger W, Wolf H, Stähler G, Neuhof H, Róka L (1982) Increased pulmonary vascular resistance and permeability due to arachidonate metabolism in isolated rabbit lungs. Prostaglandins 23:157–173

    Google Scholar 

  23. Seeger W, Stöhr G, Wolf HRD, Neuhof H (1985) Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J Appl Physiol 58:326–338

    Google Scholar 

  24. Seeger W, Suttorp N, Hellwig A, Bhakdi S (1986) Noncytolytic terminal complement complexes may serve as calcium gates to elicit leukotriene B4 generation in human polymorphonuclear leukocytes. J Immunol 137:1286–1293

    Google Scholar 

  25. Seeger W, Walmrath D, Neuhof H, Lutz F (1986) Pulmonary microvascular injury induced by pseudomonas aeruginosa cytotoxin in isolated rabbit lungs. Infect Immunol 52:846–852

    Google Scholar 

  26. Slotman GJ, Burchard KW, Williams JJ, D'Arezzo A, Yellin SA (1986) Interaction of prostaglandins, activated complement, and granulocytes in clinical sepsis and hypotension. Surgery 99:744- 750

    Google Scholar 

  27. Sprung CL, Schultz DR, Marcial E, Caralis PV, Gelbard MA, Arnold PI, Long WM (1986) Complement activation in septic shock patients. Crit Care Med 14:525–528

    Google Scholar 

  28. Suttorp N, Simon LM (1982) Enhancement of polymorphonuclear leukocyte-mediated cytotoxicity in lung cells exposed to sustained in vitro hyperoxia. J Clin Invest 70:342–350

    Google Scholar 

  29. Suttorp N, Seeger W, Lutz F, Bhakdi S (1985) Stimulation der Leukotrien-B4-Bildung in Granulozyten and Prostazyklinbildung in Endothelzellen durch porenbildende bakterielle Toxine. Med Welt 36:1238–1244

    Google Scholar 

  30. Tate RM, Vanbenthuysen KM, Shasby DM, McMurtry IF, Repine JE (1982) Oxygen-radical-mediated permeability edema and vasoconstriction in isolated perfused rabbit lungs. Am Rev Respir Dis 126:802–806

    Google Scholar 

  31. Varani J, Fligiel SEG, Till GO, Kunkel RG, Ryan US, Ward PA (1985) Pulmonary endothelial cell killing by human neutrophils: Possible involvement of hydroxyl radical. Lab Invest 53:656–663

    Google Scholar 

  32. Yamamoto T, Cochrane CG (1981) Guinea pig Hageman factor as a vascular permeability enhancement factor. Am J Pathol 105:164–175

    Google Scholar 

  33. Zaslow MC, Clark RA, Stone PJ, Calore JD, Snider GL, Franzblau C (1983) Human neutrophil elastase does not bind to alpha,-protease inhibitor that has been exposed to activated human neutrophils. Am Rev Respir Dis 128:434–439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhof, H. 3. Ursachen und Therapie von Organversagen: Mediatoren, ihr Stellenwert und therapeutische Implikationen am Beispiel des septischen Patienten. Langenbecks Arch Chiv 372, 43–47 (1987). https://doi.org/10.1007/BF01297787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01297787

Key words

Schlüsselwörter

Navigation