Skip to main content
Log in

Radiant-convective heat exchange in flow of a high-temperature gas suspension over a surface

  • Published:
Journal of engineering physics Aims and scope

Abstract

Results are offered from experimental and theoretical studies of complex heat exchange in flow of a high-temperature dusty stream over a plane plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

κ:

relative particle mass concentration

¯c:

ratio of particle specific heat to gas specific heat

\(\bar \xi = {x \mathord{\left/ {\vphantom {x L}} \right. \kern-\nulldelimiterspace} L}\) :

dimensionless longitudinal coordinate

L:

plate length

ReL=UeL/ν:

Reynolds number

θ=T/Te :

temperature

f(η):

Blasius function

η:

self-similar variable

h=ky:

optical depth of layer

h0 :

optical thickness of layer

ω:

single-scattering albedo

\(h_\lambda = h_{0\lambda } ({{\bar \xi } \mathord{\left/ {\vphantom {{\bar \xi } {e_L }}} \right. \kern-\nulldelimiterspace} {e_L }})^{1/2_\eta } \) :

optical depth of boundary layer

\(\bar h_{0\lambda } = k_\lambda L\) :

longitudinal optical thickness of layer

\(\bar B_{0\lambda } = {{B_{0\lambda } } \mathord{\left/ {\vphantom {{B_{0\lambda } } {4\sigma T_e ^4 }}} \right. \kern-\nulldelimiterspace} {4\sigma T_e ^4 }};B_{0\lambda } \) :

spectral intensity of ideal black body radiation

\(\Phi _{*\lambda } = {{J_\lambda } \mathord{\left/ {\vphantom {{J_\lambda } {4\sigma T_e ^4 }}} \right. \kern-\nulldelimiterspace} {4\sigma T_e ^4 }}\) :

dimensionless flux density of incident volume radiation

H:

enthalpy

q:

thermal flux

ρ, cp :

density and specific heat of calorimeter material

ε:

integral emissivity of wall material

α:

Stefan-Boltzmann constant

e:

parameters at external boundary of boundary layer

w:

wall

λ:

spectral

Literature cited

  1. N. N. Ponomarev and N. A. Rubtsov, Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 13, 98–103 (1980).

    Google Scholar 

  2. L. T. Grebeshnikov, É. A. Zverev, V. Ya. Klabukov, et al., Radiant Heat Exchange in Technology [in Russian], Kaunas (1987), pp. 39–40.

  3. L. A. Dombrovskii and L. G. Barkova, Teplofiz. Vys. Temp.,24, No. 4, 762–769 (1986).

    Google Scholar 

  4. N. N. Ponomarev and N. A. Rubtsov, Heat-Mass Exchange [in Russian], Vol. 2, Minsk (1984), pp. 20–24.

    Google Scholar 

  5. V. E. Abaltusov, Heat-Mass Exchange in Thermal Protection Systems with Active Mass Draft [in Russian], Dep. VINITI, No. 535-85, Jan. 21, 1985.

  6. Yu. V. Polezhaev and F. B. Yurevich, Thermal Protection [in Russian], Moscow (1976).

  7. V. E. Abaltusov, N. N. Alekseenko, V. F. Dement'ev, et al., Gagarin Scientific Studies on Cosmonautics and Aviation [in Russian], Moscow (1987), pp. 158–159.

  8. É. P. Volchkov, Gas Suspensions on Walls [in Russian], Novosibirsk (1983).

  9. V. E. Abaltusov, S. F. Bachurina, G. Ya. Mamontov, et al., Inzh.-Fiz. Zh.,49, No. 5, 763–769 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 5, pp. 749–753, May, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abaltusov, V.E., Ponomarev, N.N. Radiant-convective heat exchange in flow of a high-temperature gas suspension over a surface. Journal of Engineering Physics 56, 528–531 (1989). https://doi.org/10.1007/BF01297600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01297600

Keywords

Navigation