Skip to main content
Log in

Radiative mixed convection flow of an Oldroyd-B fluid over an inclined stretching surface

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A mixed convection flow of an Oldroyd-B fluid in the presence of thermal radiation is investigated. The flow is induced by an inclined stretching surface. The boundary layer equations of the Oldroyd-B fluid in the presence of heat transfer are used. Appropriate transformations reduce partial differential equations to ordinary differential equations. A computational analysis is performed for convergent series solutions. The values of the local Nusselt number are numerically analyzed. The effects of various parameters on velocity and temperature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mushtaq, S. Asghar, and M. A. Hossain, “Mixed Convection Flow of a Second Grade Fluid Along a Vertical Stretching Flat Surface with Variable Surface Temperature,” Heat Mass Transfer 43, 1049–1061 (2007).

    Article  ADS  Google Scholar 

  2. S. Mukhopadhyay, “Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface,” Chin. Phys. Lett. 27, 124401 (2010).

    Article  ADS  Google Scholar 

  3. T. Hayat, S. A. Shehzad, A. Alsaedi, and M. S. Alhothuali, “Mixed Convection Stagnation Point Flow of Casson Fluid with Convective Boundary Conditions,” Chin. Phys. Lett. 29, 114704 (2012).

    Article  ADS  Google Scholar 

  4. T. Hayat, S. A. Shehzad, and M. Qasim, “Mixed Convection Flow of a Micropolar Fluid with Radiation and Chemical Reaction,” Int._J. Numer. Methods Fluids 67, 2375–2387 (2011).

    MathSciNet  MATH  Google Scholar 

  5. K. Das, “Effects of Thermophoresis and Thermal Radiation on MHD Mixed Convective Heat and Mass Transfer Flow,” Afrika Mat. 24 (4), 511–524 (2013); DOI: 10.1007/s13370-012-0077-7.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip Effects on the Boundary Layer Stagnation Point Flow and Heat Transfer Towards a Shrinking Sheet,” Int. J. Heat Mass Transfer 54, 308–313 (2011).

    Article  MATH  Google Scholar 

  7. D. Pal, “Mixed Convection Heat Transfer in the Boundary Layers on an Exponentially Stretching Surface with Magnetic Field,” Appl. Math. Comput. 217, 2356–2369 (2010).

    MathSciNet  MATH  Google Scholar 

  8. W. Ibrahim and S. Shankar, “MHD Boundary Layer Flow and Heat Transfer of a Nanofluid Past a Permeable Stretching Sheet with Velocity, Thermal and Solutal Slip Boundary Conditions,” Comput. Fluids 75, 1–10 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Mukhopadhyay, “MHD Boundary Layer Flow and Heat Transfer over an Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium,” Alexandria Eng. J. 52 (3), 259–265 (2013).

    Article  Google Scholar 

  10. A. Moradi, H. Ahmadikia, T. Hayat, and A. Alsaedi, “On Mixed Convection Radiation Interaction about an Inclined Plate Through a Porous Medium,” Int. J. Thermal Sci. 64, 129–136 (2013).

    Article  Google Scholar 

  11. R. Ellahi, A. Riaz, S. Nadeem, and M. Ali, “Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium,” Math. Problems Eng. 2012, 1–24 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Jamil, C. Fetecau, and C. Fetecau, “Unsteady Flow of Viscoelastic Fluid between Two Cylinders Using Fractional Maxwell Model,” Acta Mech. Sinica 28, 274–280 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. T. Qi and J. G. Liu, “Some Duct Flows of a Fractional Maxwell Fluid,” Eur. Phys. J. Special Topics 193, 71–79 (2011).

    Article  ADS  Google Scholar 

  14. W. C. Tan and T. Masuoka, “Stability Analysis of a Maxwell Fluid in a Porous Medium Heated from Below,” Phys. Lett. A 360, 454–460 (2007).

    Article  ADS  MATH  Google Scholar 

  15. M. Qasim, T. Hayat, and S. Obaidat, “Radiation Effect on the Mixed Convection Flow of a Viscoelastic Fluid along an Inclined Stretching Sheet,” Z. Naturforsch 67a, 195–202 (2012).

    ADS  Google Scholar 

  16. S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer-Verlag, Berlin–Heidelberg; Higher Edu. Press, Beijing, 2012).

    Book  MATH  Google Scholar 

  17. T. Hayat, S. A. Shehzad, M. Qasim, et al., “Second Grade Fluid Flow with Power Law Heat Flux and Heat Source,” Heat Transfer. Res. 44, 687–702 (2013).

    Article  Google Scholar 

  18. L. Zheng, J. Niu, X. Zhang, and Y. Gao, “MHD Flow and Heat Transfer over a Porous Shrinking Surface with Velocity Slip and Temperature Jump,” Math. Comput. Model. 56, 133–144 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Abbasbandy, M. S. Hashemi, and I. Hashim, “On Convergence of Homotopy Analysis Method and Its Application to Fractional Integro-Differential Equations,” Quaestiones Math. 36, 93–105 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. O. A. Beg, M. M. Rashidi, T. A. Beg, and M. Asadi, “Homotopy Analysis of Transient Magneto-Bio-Fluid Dynamics of Micropolar Squeeze Film in a Porous Medium: A Model for Magnet-Bio-Rheological Lubrication,” J. Mech. Med. Biol. 12, 1250051 (2012).

    Article  Google Scholar 

  21. M. M. Rashidi, S. A. Mohimanian Pour, and S. Abbasbandy, “Analytic Approximate Solutions for Heat Transfer of a Micropolar Fluid through a Porous Medium with Radiation,” Comm. Nonlinear Sci. Numer. Simulat. 16, 1874–1889 (2011).

    Article  ADS  Google Scholar 

  22. M. Turkyilmazoglu, “Solution of Thomas–Fermi Equation with a Convergent Approach,” Comm. Nonlinear Sci. Numer. Simulat. 17, 4097–4103 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Turkyilmazoglu, “The Airy Equation and its Alternative Analytic Solution,” Phys. Scripta 86, 055004 (2012).

    Article  MATH  Google Scholar 

  24. T. Hayat, S. A. Shehzad, M. Qasim, and S. Obaidat, “Radiative Flow of Jeffry Fluid in a Porous Medium with Power Law Heat Flux and Heat Source,” Nuclear Eng. Design 243, 15–19 (2012).

    Article  Google Scholar 

  25. T. Hayat, M. Bilal Ashraf, and A. Alsaedi, “Small-Time Solutions for the Thin Film Flow of a Casson Fluid Due to a Suddenly Moved Plate,” J. Aerospace Eng. 27 (6), 04014034 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bilal Ashraf.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 2, pp. 142–151, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.B., Hayat, T. & Alsaedi, A. Radiative mixed convection flow of an Oldroyd-B fluid over an inclined stretching surface. J Appl Mech Tech Phy 57, 317–325 (2016). https://doi.org/10.1134/S0021894416020152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416020152

Keywords

Navigation