Skip to main content
Log in

Path integrals for Fokker-Planck equation described by generalized random walks

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Path integral representations for Fokker-Planck (FP) equations, described by the random walks (RW) and the generalized random walks (GRW), are given. The GRW is a generalized one from the usual random walks to study non-linear, non-equilibrium processes. The GRW includes some memory effects and couplings through the jumping probabilities. To derive the path integrals of the processes, a transformation of probability, scalings of site (space) and step (time) are performed on the GRW. By a function in the exponent of the path integrals for the FP equation obtained by the RW or the GRW, a “Lagrangian” giving most probable path is introduced. From the Lagrangian, an “effective Hamiltonian” is deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haken, H.: Introduction to Synergetics: Nonequilibrium Phase Transitions and Self-Organization in Physics. Chemistry and Biology. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  2. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium System- From Dissipative Structures to Order through Fluctuation. New York: John Wiley 1977

    Google Scholar 

  3. Turing, A.M.: Phil. Trans. R. Soc. London B273, 37 (1952)

    Google Scholar 

  4. Kerner, E.H.: Bull. Math. Biophys.19, 121 (1957)

    Google Scholar 

  5. Edelstein, B.B.: J. Theor. Biol.26, 227 (1970)

    Google Scholar 

  6. Segel, L.A.: J. Theor. Biol.37, 545 (1972)

    Google Scholar 

  7. Jorme, J., Carmri, S.: Math. Biosci.37, 51 (1977)

    Google Scholar 

  8. Ma, S.K.: Modern Theory of Critical Phenomena. New York: Benjamin 1976

    Google Scholar 

  9. Kubo, R.: Suppl. Prog. Theor. Phys.64, 1 (1978)

    Google Scholar 

  10. Suzuki, M.: Suppl. Prog. Theor. Phys.64, 402 (1978)

    Google Scholar 

  11. Schlögl, F.: Ann. Phys.45, 155 (1967)

    Google Scholar 

  12. Schlögl, F.: Z. Phys.243, 303 (1971);244, 199 (1971);253, 147 (1972)

    Google Scholar 

  13. Weidlich, W.: Collective Phenomena1, 51 (1972)

    Google Scholar 

  14. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integral. New York: McGraw-Hill 1965

    Google Scholar 

  15. Onsager, L., Machlup, S.: Phys. Rev.91, 1505 (1953)

    Google Scholar 

  16. Machlup, S., Onsager, L.: Phys. Rev.91, 1512 (1953)

    Google Scholar 

  17. Kac, M.: Proc. of 2nd. Berkely Sym. on Mathematical Statistics and Probability, p. 189. Berkely, CA: University of California Press 1951

    Google Scholar 

  18. Saito, N., Namiki, M.: Prog. Theor. Phys.16, 71 (1956)

    Google Scholar 

  19. Haken, H.: Z. Phys. B — Condensed Matter24, 321 (1976)

    Google Scholar 

  20. Montroll, E.W., Weiss, G.H.: J. Math. Phys.6, 167 (1965)

    Google Scholar 

  21. Montroll, E.W.: Lecture in Theoretical Physics, University of Colorado, Boulder Colorado XA, Baut, A.O., Britten, W.E. (eds.), p. 531. New York: Gordon and Breach 1967

    Google Scholar 

  22. Harris, W., Sells, R.L., Guth, E.: J. Chem. Phys.21, 1617 (1976)

    Google Scholar 

  23. Robledo, A., Farquhar, L.E.: Physica84 A, 435 (1976)

    Google Scholar 

  24. Robledo, A., Budgor, A. B.: Physica85 A, 329 (1976)

    Google Scholar 

  25. Haus, J. W., Kehr, K. W.: Solid State Commun.26, 753 (1978)

    Google Scholar 

  26. Fujita, S., Okamura, Y., Chen, J.T.: J. Chem. Phys.72, 3993 (1980)

    Google Scholar 

  27. Hara, H.: Phys. Rev. B20, 4062 (1979)

    Google Scholar 

  28. Wiegel, F.W.: Physica33, 734 (1967),37, 105 (1967)

    Google Scholar 

  29. Dekker, H.: Physica84 A, 205 (1976),85 A, 363 (1976),85 A, 593 (1976)

    Google Scholar 

  30. Lavenda, B.H.: Nuovo Cimento42, 9 (1977); Phys. Lett.71 A, 304 (1979)

    Google Scholar 

  31. Goto, T.: Prog. Theor. Phys.60, 1298 (1978)

    Google Scholar 

  32. Mühlschlegel, B.: Proc. of NATO on Path Integrals and Their Applications. Papadoupolouse, G.J., Devreese, J.T. (eds.), p. 39. Antwerpen 1977

  33. Kubo, R., Matsuo, K., Kitahara, K.: J. Stat. Phys.9, 51 (1973)

    Google Scholar 

  34. Morita, T., Hara, H.: Physica101 A, 283 (1980)

    Google Scholar 

  35. Hara, H.: Z. Phys. B — Condensed Matter36, 369 (1980), where notationsP ± {N−1} (m|m±1) in (2.3) and (3.2) should be read asP ± {N−1} (m±1|m). Also relations (3.1) and (4.4) should be supplemented by the relations\(\sum\limits_l {B_{l,N - 1} W_l (m \mp 1,N - 1) = W_i (m - 1)} \), and ∑b l (t)w l (x,t)=w i(x ,t), respectively

    Google Scholar 

  36. Hara, H.: Z. Phys. B — Condensed Matter39, 261 (1980)

    Google Scholar 

  37. Hara, H., Choi, S.D.: Z. Phys. B — Condensed Matter36, 365 (1980)

    Google Scholar 

  38. See also: Goel, N.S., Richter-Dyn, N.: Stochastic Models in Biology. New York: Academic Press 1974

    Google Scholar 

  39. Tomita, H., Ito, A., Kidachi, H.: Prog. Theor. Phys.56, 786 (1976)

    Google Scholar 

  40. McQuarrie, D.A.: Statistical Mechanics. New York: Harper & Row 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, H. Path integrals for Fokker-Planck equation described by generalized random walks. Z. Physik B - Condensed Matter 45, 159–166 (1981). https://doi.org/10.1007/BF01293330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01293330

Keywords

Navigation