Skip to main content
Log in

Comparative pharmacodynamic studies with the novel serotonin uptake-enhancing tianeptine and — inhibiting fluvoxamine utilizing EEG mapping and psychometry

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

In a double-blind, placebo-controlled study, the encephalotropic and psychotropic effects of tianeptine (TIA) — a new tricyclic antidepressant, enhancing serotonin reuptake — were investigated as compared with the serotonin reuptake inhibiting antidepressant, fluvoxamine (FLU), utilizing EEG mapping, psychometric and psychophysiological measures. 16 healthy volunteers (8 males, 8 females) aged 21–35 (man 27) years received randomized and at weekly intervals single oral doses of placebo, 12.5 and 25 mg TIA and 50mg FLU. EEG recordings, psychometric and psychophysiological tests and evaluation of pulse, blood pressure and side effects were carried out at 0,2,4,6 and 8 hours; blood sampling, in addition, at hour 1.

TIA plasma levels rose fast to peaks at 1–2 hours and declined rapidly as well, while the MC5 metabolite peaked in the 4th hour and declined more slowly. EEG mapping demonstrated that both TIA and FLU induced significant changes in brain function between the 1st and 8th hour, which, however, differed in their time course. 12.5 mg TIA exhibited, as compared with placebo, slight activating properties in the EEG (decrease of delta and theta, increase of alpha and beta, acceleration of the centroid), parallelled by thymopsychic improvement (mood elevation). 25 mg TIA showed EEG activation up to the 4th hour, later EEG sedation, accompanied by an initial thymopsychic improvement and differential changes thereafter (improved mood, decreased vigility), with the noopsyche improving at all times (attention, Pauli test). 50mg FLU induced initially sedation and thereafter activation, accompanied by thymopsychic deterioration and subsequent improvement, the latter also being observed in the noopsyche (attention, memory). In pupillary and skin conductance measures, generally a slight activation occurred after placebo, which was attenuated by 25 mg TIA. Correlation maps between plasma levels and EEG changes demonstrated: the higher the TIA plasma levels, the more absolute and relative beta power, the less alpha power and the faster the centroid of the total power spectrum, reflecting CNS-activation. Topographically, the correlations were mostly seen over both fronto-temporal regions. In the latter, dominant frequency signalled desactivation in the right and activation in the left hemiphere after both antidepressants, which thereby induced changes in brain function opposite to those observed in depression. Both drugs were well tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderer P, Saletu B, Kinsperger K, Semlitsch H (1987) Topographic brain mapping of EEG in neuropsychopharmacology, part I. Methodological aspects. Meth Find Exp Clin Pharmacol 9(6): 371–384

    Google Scholar 

  • Anderer P, Semlitsch HV, Saletu B, Barbanoj MJ (1992) Artifact processing in topographic mapping of electroencephalographic activity in neuropsychopharmacology. Psychiatry Res 45: 79–93

    Google Scholar 

  • Angst J, Bech P, Boyer P, Bruinvels J, Engel R, Helmchen H, Hippius H, Lingjaerde O, Racagni G, Saletu B, Sedvall G, Silverstone JT, Stefanis CN, Stoll K, Woggon B (1989) Consensus conference on the methodology of clinical trials of antidepressants, Zurich, March 1988: report of the consensus committee. Pharmacopsychiat 22: 3–7

    Google Scholar 

  • Antonijoan RM, Barbanoj MJ, Anderer P, Torrent J, Jane F, Saletu B (1994) Antidepressants and anxiolytics: their interaction on vigilance. J Psychophysiol 8: 248

    Google Scholar 

  • Bartels PH, Subach JA (1976) Automated interpretation of complex scenes. In: Preston E, Onoe M (eds) Digital processing of biomedical imagery. Academic Press, New York, pp 101–114

    Google Scholar 

  • Blier P, Mongeau R, Weiss M, de Montigny C (1993) Modulation of serotonin neurotransmission by presynaptic alpha-2-adrenergic receptors: a target for antidepressant pharmacotherapy? In: Mendlewicz J, Brunello N, Langer SZ, Racagni G (eds) New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomedical Drug Research, vol 5. Karger, Basel, pp 74–82

    Google Scholar 

  • Bruder GE, Yozawita A (1979) Central auditory processing and laterality in psychiatric patients. In: Gruzelier J, Flor-Henry P (eds) Hemisphere asymmetries of function and psychopathology. Elsevier, Amsterdam

    Google Scholar 

  • Brumback RA, Staton RD, Wilson H (1980) Neuropsychological study of children during and after remission of endogenous depressive episodes. Percept Mot Skills 50: 1163–1167

    Google Scholar 

  • Brunello N, Riva M, Volterra A, Racagni G (1987) Effect of some tricylic and nontricyclic antidepressants on [3]imipramine binding and serotonin uptake in rat cerebral cortex after prolonged treatment. Fundam Clin Pharmacol 1: 327–333

    Google Scholar 

  • Casacchia M, Sconci V, Vespucci G, Brancato T (1989) Double blind clinical study of tianeptine, a new 5-HT uptake enhancer. International Symposium on Serotonin: From Cell Biology to Pharmacology and Therapeutics, Florence, p 92

  • Chamba G, Lemoine P, Flachaire E, Ferry N, Quincy C, Sassard J, Ferber C, Mocaer E, Kamoun A, Renaud B (1991) Increased serotonin platelet uptake after tianeptine administration in depressed patients. Biol Psychiatry 30: 609–617

    Google Scholar 

  • Costa e Suva JA, Ruschel S (1994) Tianeptine versus placebo study in major depressions and depressive bipolar disorders. Eur Psychiatry 9 [Suppl 1]: 140

    Google Scholar 

  • Davidson RJ (1987) EEG measures of cerebral asymmetry: conceptual and methodological issues. Int J Neurosci 39: 69–71

    Google Scholar 

  • Defrance R, Marey C, Kamoun A (1988) Antidepressant and anxiolytic activities of tianeptine. An overview of clinical trials. Clin Neuropharmacol 11 [Suppl 2]: 74–82

    Google Scholar 

  • Delagrange P, Bouyer JJ, Durand C, Mocaer E, Rougeul A (1990) Action of tianeptine on focalization of attention in cat. Psychopharmacology 102: 227–233

    Google Scholar 

  • Delbende C, Contesse V, Mocäer E, Kamoun A, Vaudry H (1991) The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. Eur J Pharmacol 202: 391–396

    Google Scholar 

  • De Montigny C, Chaput Y, Blier P (1993) Classical and novel targets for antidepressant drugs. In: Mendlewicz J, Brunello N, Langer SZ, Racagni G (eds) New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomédical Drug Research, vol 5. Karger, Basel, pp 8–17

    Google Scholar 

  • De Simoni MG, De Luigi A, Manfridi A, Sokola A (1989) Tianeptine enhancement of serotonin uptake: an in vivo voltametric study. International Symposium on Serotonin From Cell Biology to Pharmacology and Therapeutics, Florence, March 29–April 1, 1989, p 87 (Abstract)

  • Duffy FH, Bartels PH, Burchfield JL (1981) Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephalogr Clin Neurophysiol 51: 455–462

    Google Scholar 

  • El Mestikawy S, Gozlan H, Ménard F, Bourgoin S, Hamon M (1988) Interactions of the potential antidepressant tianeptine with central serotonin receptors in the rat brain. Fifth International Meeting on Clinical Pharmacology and Psychiatry, Tromso, p 31

  • Fattacini CM, Bolanos-Jimenez F, Gozlan H, Hamon M (1990) Tianeptine stimulates uptake of 5-hydroxytryptamine in vivo in the rat brain. Neuropharmacology 29: 1–8

    Google Scholar 

  • File SE, Mabbutt PS (1991) Effects of tianeptine in animal models of anxiety and on learning and memory. Drug Dev Res 23: 47–56

    Google Scholar 

  • Flor-Henry P (1974) Psychosis, neurosis and epilepsy: developmental and gender-related effects and their aetiological contribution. Br J Psychiatry 124: 144–150

    Google Scholar 

  • Flor-Henry P (1976) Lateralized temporal-limibic dysfunction and psychopathology. Ann NY Acad Sci 280: 777–797

    Google Scholar 

  • Gasser T, Bächer P, Möcks J (1982) Transformation towards the normal distribution of broad band spectrum parameters of the EEG. Clin Neurophysiol 43: 119–124

    Google Scholar 

  • Grahame-Smith DG (1992) Serotonin in affective disorders. In: Montgomery SA (ed) Selective serotonin reuptake inhibitors in psychiatric practice. Rapid Communications of Oxford Ltd, Oxford, pp 5–13

    Google Scholar 

  • Grislain L, Gelé P, Bertrand M, Luijten W, Bromet N, Salvadori C, Kamoun A (1990) The metabolic pathways of tianeptine, a new antidepressant, in healthy volunteers. Drug Metab Dis 18(5): 804–808

    Google Scholar 

  • Grünberger J (1977) Psychodiagnostik des Alkoholkranken. Ein methodischer Beitrag zur Bestimmung der Organizität in der Psychiatrie. Maudrich, Wien

    Google Scholar 

  • Grünberger J, Linzmayer L, Saletu B (1984) Klinische Psychodiagnostik mit Hilfe psychophysiologischer Verfahren. Wien Med Wochenschr 134: 29–35

    Google Scholar 

  • Guelfi JD (1992) Efficacy of tianeptine in comparative trials versus reference antidepressants: an overview. Br J Psychiatry 160 [Suppl 15]: 72–75

    Google Scholar 

  • Hamon M, Bourgoin S, Gozlan H (1989) Effet de la tianeptine sur la libération de la [3H]5 HT et sur les divers types de récepteurs sérotoninergiques dans le système nerveux chez le rat. J Psychiatr Biol Ther (March): 32–35

  • Herrmann WM (1982) Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart New York, pp 249–351

    Google Scholar 

  • Herrmann WM, Schärer E (1986) Das Pharmako-EEG und seine Bedeutung für die klinische Pharmakologie. In: Kuemmerle HP, Hitzenberger G, Spitzy KH (eds) Klinische Pharmakologie, 4th edn. Landsberg, München, pp 1–71

  • Invernizzi R, Pozzi L, Garattini S, Samanin R (1992) Tianeptine increases the extracellular concentrations of dopamine in the nucleus accumbens by a serotonin-independent mechanism. Neuropharmacology 31: 221–227

    Google Scholar 

  • Itil TM (1982) The significance of quantitative pharmaco-EEG in the discovery and classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart New York, pp 131–157

    Google Scholar 

  • Itil TM, Shapiro DM, Eralp E, Akmann A, Itil KZ, Garbizu C (1985) A new brain function diagnostic unit, including the dynamic brain mapping of computer analyzed EEG, evoked potentials and sleep (a new hardware/software system and its application in psychiatry and psychopharmacology). New Trends Exp Clin Psychiatry 1: 107–177

    Google Scholar 

  • Jaffard R, Mocaer E, Poignant JC, Micheau J, Marighetto A, Meunier M, Beracochea D (1991) Effects of tianeptine on spontaneous alternation, simple and concurrent spatial discrimination learning and on a sequential alternation deficit induced by longterm ethanol administration in mice. Behav Pharmacol 2: 37–46

    Google Scholar 

  • Kato G, Weitsch AF (1988) Neurochemical profile of tianeptine a new antidepressant drug. Clin Neuropharmacol 11 [Suppl 2]: 43–50

    Google Scholar 

  • Kelly JP, Leonard BE (1990) The effect of tianeptine on the olfactory bulbectomized (OB) rat model of depression. Third Int Congress of Europ Behavioural Pharmacology Meeting, Noordwigkhout, The Netherlands, June 25–27, 1990

  • Kronfol Z, Hamsher K, Digre K, Waziri R (1978) Depression and hemispheric functions: changes associated with unilateral ECT. Br J Psychiatry 132: 560–567

    Google Scholar 

  • Labrid C, Moleyre J, Poignant JC, Malen C, Mocaer E, Kamoun A (1988) Structureactivity relationship of tricyclic antidepressants, with special reference to tianeptine. Clin Neuropharmacol 11 [Suppl 2]: 21–31

    Google Scholar 

  • Lejeune F, Poignant JC, Reure H (1988) Etude électrophysiologique de la tianeptine, nouveau stimulant du recaptage de la sérotonine possédant une activité antidépressive. Neurophysiol Clin 18: 369–381

    Google Scholar 

  • Loo H, Deniker P (1988) Position of tianeptine among antidepressive chemotherapies. Clin Neuropharmacol 11 [Suppl 2]: 97–102

    Google Scholar 

  • Matousek M, Capone C, Okawa M (1981) Measurement of the interhemispheral differences as a diagnostic tool in psychiatry. Adv Biol Psychiat 6: 76–80

    Google Scholar 

  • Mennini T, Mocaer E, Garattini S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedebergs Arch Pharmacol 336: 478–482

    Google Scholar 

  • Mocaer E, Rettori MC, Kamoun A (1988a) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol 11 [Suppl 2]: 32–42

    Google Scholar 

  • Mocaer E, Lagarde D, Balzamo E, Milhaud C (1988b) Effects of tianeptine on sleepwakefulness cycles and EEG in monkey. Abstracts of the XVIth C.I.N.P. Congress, Munich August 15–19, 1988. Psychopharmacology 96 [Suppl]: 275

    Google Scholar 

  • Nicot G, Lachatre G, Gonnet C, Mallon J, Mocaer E (1986) Ion paired extraction and high performance liquid Chromatographic determination of tianeptine and its metabolites in human plasma, urine and tissues. J Chromatogr 381: 115–126

    Google Scholar 

  • Olie JP, Guelfi JD, Malka R, Dulcire C, Kamoun A, Loo H (1988) Traitements de longue durée par les antidépresseurs. La tianeptine: Méthodologie d'une étude au long cours et résultats préliminaires. L'Encéphale 14: 79–84

    Google Scholar 

  • Ortiz J, Mocaer E, Artigas F (1991) Effects of the antidepressant drug tianeptine on plasma and platelet serotonin in the rat. Eur J Pharmacol 199: 335–339

    Google Scholar 

  • Ortiz J, Mariscot C, Alvarez E, Artigas F (1993) Effects of the antidepressant drug tianeptine on plasma and platelet serotonin of depressive patients and healthy controls. J Affect Disord 29: 227–234

    Google Scholar 

  • Osgood CD, Suci GJ, Tannenbaum PH (1975) The measurement of meaning. University Press, Urbana

    Google Scholar 

  • Perris C, Monakhov K (1979) Depressive symptomatology and systematic structural analysis of the EEG. In: Gruzelier J, Flor-Henry P (eds) Hemisphere asymmetries of function and psychopathology. Elsevier, Amsterdam

    Google Scholar 

  • Perris C, Monakhov K, Knorring Lvon, Botskarev V, Nikiforov A (1978) Systematic structural analysis of the electroencephalogram of depressed patients: general principles and preliminary results of an international collaborative study. Neuropsychobiology 4: 207–228

    Google Scholar 

  • Poignant JC (1981) Etude pharmacologique d'un nouvel antidépresseur: la tianeptine. In: Perris C, Struwe G, Jansson B (eds) Biological psychiatry. Elsevier, Amsterdam, pp 573–578

    Google Scholar 

  • Prichep LS, Lieber AL, John ER, Alper K, Gomez-Mont F, Essig-Peppard T, Flitter M (1986) Quantitative EEG in depressive disorders. In: Shagass Ch, Josiassen RC, Roemer RA (eds) Brain electrical potentials and psychopathology. Elsevier, New York Amsterdam London, pp 223–244

    Google Scholar 

  • Sacchetti G, Bonini I, Cools Waeterloos G, Samanin R (1993) Tianeptine raises dopamine and blocks stress-induced noradrenaline release in the rat frontal cortex. Eur J Pharmacol 236: 171–175

    Google Scholar 

  • Saletu B (1982) Pharmaco-EEG profiles of typical and atypical antidepressants. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: clinical practice. Raven Press, New York, pp 257–268

    Google Scholar 

  • Saletu B (1987) The use of pharmaco-EEG in drug profiling. In: Hindmarch I, Stonier PD (eds) Human psychompharmacology. Measures and methods, vol 1. Wiley, Chichester, pp 173–200

    Google Scholar 

  • Saletu B (1993) Neurophysiological and psychometric evaluation of central effects of classic and novel antidepressants. EEG mapping in depression. In: Mendlewicz J, Brunello N, Langer SZ, Racagni G (eds) New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomedical and Drug Research, vol 5. Karger, Basel, pp 48–61

    Google Scholar 

  • Saletu B, Grünberger J (1985) Classification and determination of cerebral bioavailability of fluoxetine: pharmacokinetic, pharmaco-EEG and psychometric analyses. J Clin Psychiatry 46: 3 [Sec 2]: 45–52

    Google Scholar 

  • Saletu B, Grünberger J, Flener R, Linzmayer L, Sieroslawski H (1976) Determination of psychoactivity and cerebral bioavailability of danitracene (WA 335) by quantitative pharmaco-EEG and psychometric investigations. Curr Ther Res 20: 810–820

    Google Scholar 

  • Saletu B, Grünberger J, Linzmayer L, Anderer P (1980a) Classification arid assessment of pharmacodynamics of SGD-SCHA 1059 (Binodaline) by quantitative EEG and psychometric analyses. In: Perris C, Knorring L, Kemali D (eds) Clinical neurophysiological aspects of psychopathological conditions. Karger, Basel, pp 140–166 (Adv Biol Psychiat)

    Google Scholar 

  • Saletu B, Grünberger J, Rajna P, Karobath M (1980b) Clovoxamine and FLUvoxamine-2 biogenic amine re-uptake inhibiting antidepressants: quantitative EEG, psychometric and pharmacokinetic studies in man. J Neural Transm 49: 63–86

    Google Scholar 

  • Saletu B, Grünberger J, Taeuber K, Nitsche V (1982) Relation between pharmac odynamics and -kinetics: EEG and psychometric studies with cinolazepam and nomifensine. In: Herrmann W (ed) EEG in drug research. Fischer, Stuttgart New York, pp 89–111

    Google Scholar 

  • Saletu B, Grünberger J, Rajna P (1983a) Pharmaco-EEG profiles of antidepressants. Pharmacodynamic studies with fluvoxamine. Br J Clin Pharmacol 15: 369–384

    Google Scholar 

  • Saletu B, Grünberger J, Linzmayer L, Wittek R, Stöhr H (1983b) Klassifikation und Bestimmung der Pharmakodynamik eines neuen tetrazyklischen Antidepressivums, Pirlindol, mittels Pharmako-EEG und Psychometrie. Wien Klin Wochenschr 95: 481–493

    Google Scholar 

  • Saletu B, Grünberger J, Linzmayer L (1985) Early clinical pharmacological studies with sercloremine—a novel antidepressant — utilizing pharmacokinetic, pharmaco-EEG and psychometric analyses. Drug Dev Res 6: 19–38

    Google Scholar 

  • Saletu B, Grünberger J, Linzmayer L (1986) On central effects of serotonin re-uptake inhibitors: quantitative EEG and psychometric studies with sertraline and zimelidine. J Neural Transm 67: 241–266

    Google Scholar 

  • Saletu B, Anderer P, Kinsperger K, Grünberger J (1987) Topographic brain mapping of EEG in neuropsychopharmacology, part II. Clinical applications (Pharmaco EEG imaging). Meth Find Exp Clin Pharmacol 9(6): 385–408

    Google Scholar 

  • Saletu B, Grünberger J, Anderer P, Linzmayer L, Semlitsch HV, Magni G (1992) Pharmacodynamics of venlafaxine evaluated by EEG brain mapping, psychometry and psychophysiology. Br J Clin Pharmacol 33: 589–601

    Google Scholar 

  • Saletu B, Brandstätter N, Anderer P, Semlitsch HV, Binder G, Decker K, Metka M, Huber J, Knogler W (1993) Neurophysiological investigations in menopausal syndrome with and without depression and normal controls: EEG and EP mapping. Neuropsychopharmacology 9(2S): 61–61

    Google Scholar 

  • Salvadori C, Ward C, Defrance R, Hopkins R (1990) The pharmacokinetics of the antidepressant tianeptine and its main metabolite in healthy humans — influence of alcohol co-administration. Fund Clin Pharmacol 4: 115–125

    Google Scholar 

  • Sandler M, Coppen A, Harnett S (eds) (1991) 5-Hydroxytryptamine in psychiatry. A spectrum of ideas. Oxford Medical Publications, Oxford New York Tokyo

    Google Scholar 

  • Semlitsch HV, Anderer P, Schuster P, Presslich O (1986) A solution for reliable and valid reduction of ocular artifacts applied to the P300 ERP. Psychophysiology 23: 695–703

    Google Scholar 

  • Staner L, Bertolino A, Cassano GB, De Wilde J, Ferreira L, Kasas A, Mendlewicz J, Mertens C, Paes de Sousa M, Sarteschi P, Van HA, Ozun M, Loo H (1994) European multicenter study of tianeptine versus imipramine and placebo in the treatment of major depression and depressed bipolar disorders. Eur Psychiatry 9 [Suppl 1]: 140

    Google Scholar 

  • Thiebot MH, Martin P, Puech AJ (1991) Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry 160(15): 44–50

    Google Scholar 

  • Tucker DM (1981) Asymmetrical frontal lobe function during a transient depressive state. In: Perris C, Kemali D, Vacca L (eds) Electroneurophysiology and psychopathology. Karger, Basel, pp 68–71

    Google Scholar 

  • Von Zerssen D, Koeller DM, Rey ER (1970) Die Befindlichkeitsskala (B-S) — ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen. Arzneimittelforschungl Drug Res 20: 915–918

    Google Scholar 

  • Whitton PS, Sarna GS, Curzon G (1991) Effects of tianeptine on stress-induced behavioural deficits and 5-HT dependent behaviour. Psychopharmacology 104: 81–85

    Google Scholar 

  • Yozawitz A, Bruder G, Sutton S, Sharpe L, Gurland B, Fleiss J, Costa L (1979) Dichotic perception: evidence for right hemisphere dysfunction in affective psychosis. Br J Psychiatry 135: 229–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saletu, B., Grünberger, J., Anderer, P. et al. Comparative pharmacodynamic studies with the novel serotonin uptake-enhancing tianeptine and — inhibiting fluvoxamine utilizing EEG mapping and psychometry. J. Neural Transmission 103, 191–216 (1996). https://doi.org/10.1007/BF01292627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01292627

Keywords

Navigation