Skip to main content
Log in

Nuclear collective states at finite temperature

  • Published:
Zeitschrift für Physik A Atomic Nuclei

Abstract

The Energy Density Method (EDM) has been used to study low-lying nuclear collective states as well as isoscalar giant resonances at finite temperature (T). Giant states have been studied by computing the corresponding strength function moments (sum rules) in the Random-Phase Approximation (RPA). For the description of the low lying states we have resorted to a variety of models from the rather sophisticated RPA method to liquid drop and schematic models. It has been found that low lying states are most affected by thermal effects, giant resonances being little affected in the range of temperatures here studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lattimer, J.M.: Ann. Rev. Nucl. Sci.31, 337 (1981)

    Google Scholar 

  2. Barranco, M., Buchler, J.R.: Phys. Rev.22, 1729 (1980)

    Google Scholar 

  3. Suraud, E., Vautherin, D.: Phys. Lett.138B, 325 (1984)

    Google Scholar 

  4. Pi, M. et al.: Astron. Astrophys. Suppl. Ser.64, 439 (1986)

    Google Scholar 

  5. Bonche, P., Vautherin, D.: Nucl. Phys. A372, 496 (1981)

    Google Scholar 

  6. Stocker, W., Burzlaff, J.: Nucl. Phys. A202, 265 (1973)

    Google Scholar 

  7. Sauer, G., Chandra, H., Mosel, U.: Nucl. Phys. A264, 221 (1976)

    Google Scholar 

  8. Brack, M., Quentin, P.: Phys. Lett.52B, 159 (1974)

    Google Scholar 

  9. Di Toro, M., Nörenberg, W., Rosina, M., Stringari, S. (eds.): Proceedings of the Topical Meeting on Phase Space Approach to Nuclear Dynamics, Trieste (Italy). Singapore: World Scientific 1985

    Google Scholar 

  10. Proceedings of the International Conference on Heavy Ion Nuclear Collisions in the Fermi Energy Domain, Caen (France), 1986. J. Phys. C4 (1986)

  11. Siemens, P.J.: Nature305, 410 (1983)

    Google Scholar 

  12. Panagiotou, A.D. et al.: Phys. Rev. Lett.52, 496 (1984)

    Google Scholar 

  13. Song, O.S. et al.: Phys. Let.130B, 14 (1983);

    Google Scholar 

  14. d'Onofrio, A. et al.: Z. Phys. A — Atomic Nuclei326, 335 (1987)

    Google Scholar 

  15. Snover, K.A.: Ann. Rev. Nucl. Part. Sci.36, 545 (1986)

    Google Scholar 

  16. Bonche, P., Vautherin, D., Vénéroni, M.: J. Phys. C4, 339 (1986)

    Google Scholar 

  17. Vinet, L., Sébille, F., Grégoire, C., Schuck, P.: Phys. Lett.172B, 17 (1986)

    Google Scholar 

  18. Nemeth, J., Barranco, M., Ngô, C., Tomasi, E.: Z. Phys. A —Atomic Nuclei323, 419 (1986)

    Google Scholar 

  19. des Cloizeaux, J.: In: Many-body physics, Les Houches, 1967, p. 5. New York: Gordon and Breach 1968

    Google Scholar 

  20. Sagawa, H., Bertsch, G.F.: Phys. Lett.146B, 138 (1984)

    Google Scholar 

  21. Bar-Touv, J.: Phys. Rev. C32, 1369 (1985)

    Google Scholar 

  22. Faber, M.E., Egido, J.L., Ring, P.: Phys. Lett.127B, 5 (1983)

    Google Scholar 

  23. Vautherin, D., VinhMau, N.: Nucl. Phys. A422, 140 (1984)

    Google Scholar 

  24. Gallardo, M., Diebel, M., Døssing, T., Broglia, R.: Nucl. Phys. A443, 415 (1985)

    Google Scholar 

  25. Bortignon, P.F., Broglia, R., Bertsch, G.F., Pacheco, J.: Nucl. Phys. A460, 149 (1986)

    Google Scholar 

  26. Barranco, M., Polls, A., Martorell, J.: Nucl. Phys. A444, 445 (1985)

    Google Scholar 

  27. Meyer, J., Quentin, P., Brack, M.: Phys. Lett.133B, 279 (1983)

    Google Scholar 

  28. Barranco, M., Marcos, S., Treiner, J.: Phys. Lett.143B, 314 (1984)

    Google Scholar 

  29. Barranco, M. et al.: Phys. Lett.154B, 96 (1985)

    Google Scholar 

  30. Barranco, M. et al.: Nucl. Phys. A464, 29 (1987)

    Google Scholar 

  31. Suraud, E., Barranco, M., Treiner, J.: Orsay preprint IPNO/TH 87-15; Nucl. Phys. (to be published)

  32. Lombard, R.J., Mas, D.: Nucl. Phys. A336, 185 (1980)

    Google Scholar 

  33. Lombard, R.J., Mas, D.: Ann. Phys.167, 2 (1986)

    Google Scholar 

  34. Bohr, A., Mottelson, B.R.,: Nuclear structure. W.A. Benjamin (ed.), vol. II, Appendix 6A 1975

  35. Vinas, X., Pi, M., Barranco, M.: J. Phys. G9, 1193 (1983)

    Google Scholar 

  36. Lombard, R.J.: Ann. Phys.77, 380 (1973)

    Google Scholar 

  37. Pi, M., Vinas, X., Barranco, M.: Phys. Rev. C26, 733 (1982); An. Fis. (Spain) A80, 26 (1984)

    Google Scholar 

  38. Sommermann, H.M.: Ann. Phys.151, 163 (1983)

    Google Scholar 

  39. Civitarese, O., Broglia, R., Dasso, C.: Ann. Phys.156, 142 (1984)

    Google Scholar 

  40. Beiner, M., Lombard, R.J.: Ann. Phys.86, 262 (1974)

    Google Scholar 

  41. Bohigas, O., Lane, A., Martorell, J.: Phys. Rep.51, 267 (1979)

    Google Scholar 

  42. Casas, M., Martorell, J.: An. Fis. (Spain)81, 150 (1985)

    Google Scholar 

  43. Bertrand, F.E.: Nucl. Phys. A354, 1290 (1981)

    Google Scholar 

  44. Frascaria, N.: XXIV International Winter Meeting on Nuclear Physics, Bormio (Italy), January 1986; see also N. Frascaria et al.: Orsay Preprint DRE 87-10

  45. Blaizot, J.P., Gogny, D.: Nucl. Phys. A284, 429 (1977)

    Google Scholar 

  46. Eisenberg, J., Greiner, W.: Microscopic theory of the nucleus. Amsterdam: North Holland 1972

    Google Scholar 

  47. Vautherin, D., Vénéroni, M.: First International Spring Seminar on Nuclear Structure, Sorrento (Italy), May 1986; see also Orsay Preprint IPNO/TH 86-63

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the CAICYT (Spain), Grant PB85-0072-C02-00

Laboratoire Associé au CNRS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milian, A., Barranco, M., Mas, D. et al. Nuclear collective states at finite temperature. Z. Physik A - Atomic Nuclei 330, 5–14 (1988). https://doi.org/10.1007/BF01287257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287257

PACS

Navigation