Skip to main content
Log in

Investigations of the turnover of the putative Cellulose-synthesizing particle “rosettes” within the plasma membrane ofFunaria hygrometrica protonema cells

I. Effects of monensin and cytochalasin B

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

YoungFunaria protonemata were treated with Monensin (10−6 M) and Cytochalasin (CB) (2×10−5 M). The influence of the inhibitors on a) elongation growth, b) cell fine structure and c) particle “rosettes” within the plasma membrane after freeze fracture was observed. Monensin stopped cell growth, caused swelling of the mitochondria and plastids and inhibited the secretory activity of the Golgi apparatus within about 15 minutes. The number of rosettes in the PF of the plasma membrane was distinctly reduced after 4–5 minutes and decreased further to only very few after 30 minutes. The tip to base gradient in distribution was maintained for a long time. The effects were reversible, regeneration occurred within 3 hours. CB treatment showed no effect on elongation growth and cell fine structure. The number of rosettes, however, was strongly reduced within 3 minutes exposure time and their distribution was nearly uniform then. Number and tip to base gradient increased again after 6 minutes intoxication. The results are discussed in regard to the turn over of the rosettes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CB:

Cytochalasin B

PF:

protoplasmic fracture face

F-vesicle:

flat vesicle

F-Actin:

filamentous actin

G-Ac-tin:

globular actin

References

  • Boss WF, Morré DJ, Mollenhauer HH (1984) Monensin-induced swelling of the Golgi apparatus cisternae mediated by a proton gradient. Eur J Cell Biol 34: 1–8

    PubMed  Google Scholar 

  • Brown SS, Spudich JA (1981) Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol 88: 487–491

    PubMed  Google Scholar 

  • Caputo R, Gianotti F (1979) Junctions between histiocytes: Role of coated vesicles. J Ultrastruct Res 68: 256–264

    PubMed  Google Scholar 

  • Fowler VM, Pollard HB (1982) Chromaffin granule membrane- F-actin interactions are calcium sensitive. Nature 295: 336–339

    PubMed  Google Scholar 

  • Fussmann B, Dancker P (1986) Polymerisation of actin in the absence and presence of cytochalasin B: Problems of determining “critical concentration”. Z Naturforsch 41c: 781–786

    Google Scholar 

  • Geisow MJ, Burgoyne RD (1982) Effect of monensin on chromaffin cells and the mechanism of organelle swelling. Cell Biol Int Rep 6: 933

    PubMed  Google Scholar 

  • Giddings TH, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane ofMicrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary walls. J Cell Biol 84: 327–339

    PubMed  Google Scholar 

  • Griffing LR, Ray PM (1984) Involvement of monovalent cations in Golgi secretion by plants. Eur J Cell Biol 36: 24–31

    Google Scholar 

  • Haigler CH, Brown RM Jr (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells ofZinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111–120

    Google Scholar 

  • Hepler PK (1985) The plant cytoskeleton. In:Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford New York, pp 233–262

    Google Scholar 

  • Herth W (1985) Plant cell wall formation. In:Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford New York, pp 285–310

    Google Scholar 

  • Hübner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells. Evidence obtained using heavy metal salt solution. Protoplasma 129: 214–222

    Google Scholar 

  • Itoh T, Brown RM Jr (1984) The assembly of cellulose microfibrils inValonia macrophysa Kütz. Planta 160: 372–381

    Google Scholar 

  • Joachim S, Robinson DH (1984) Endocytosis of cationic ferritin by bean leaf protoplasts. Eur J Cell Biol 34: 212–216

    Google Scholar 

  • Kiermayer O, Dobberstein B (1973) Membrankomplexe dictyosomaler Herkunft als „Matrizen“ für die extraplasmatische Synthese und Orientierung von Mikrofibrillen. Protoplasma 77: 437–451

    Google Scholar 

  • —,Sleytr UB (1979) Hexagonally ordered “rosettes” of particles in the plasma membrane ofMicrasterias denticulata Breb. and their significance for microfibril formation and orientation. Protoplasma 101: 133–138

    Google Scholar 

  • Kristen U, Lockhausen J (1983) Estimation of Golgi membrane flow rates in ovary glands ofAptenia cordifolia using cytochalasin B. Eur J Cell Biol 29: 262–267

    PubMed  Google Scholar 

  • Lehtonen J (1983) Action of cytochalasin B on cytoplasmic streaming systems and morphogenesis inMicrasterias torreyi (Conjugatophyceae). Nordic J Bot 3: 521–531

    Google Scholar 

  • Lelkes PI, Friedmann JE, Rosenheck K, Oplatka A (1986) Destabilization of actin filaments as a requirement for the secretion of catecholamins from permeabilized chromatin cells. FEBS Lett 208: 357–363

    PubMed  Google Scholar 

  • Lin S, Lin DC, Flanagan MD (1978) Specificity of the effects of cytochalasin B on transport and motile processes. Proc Natl Acad Sci USA 75: 329–333

    PubMed  Google Scholar 

  • Lockhausen J, Kristen U (1983) Effects of cytochalasin B on the mitochondria and Golgi apparatus in ovary gland cells ofAptenia cordifolia. Z Pflanzenphysiol 110: 191–199

    Google Scholar 

  • MacLean-Fletcher S, Pollard TD (1980) Mechanism of action of cytochalasin B on actin. Cell 20: 329–341

    PubMed  Google Scholar 

  • Mollenhauer HH, Morré DJ (1976) Cytochalasin B, but not colchicine inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87: 39–48

    PubMed  Google Scholar 

  • — —,Norman JO (1982) Ultrastructural observations of maize root tips following exposure to monensin. Protoplasma 112: 117–126

    Google Scholar 

  • — —,Droleskey R (1983) Monensin affects thetrans half ofEuglena dictyosomes. Protoplasma 114: 119–124

    Google Scholar 

  • Morré DJ, Boss WF, Grimes H, Mollenhauer HH (1983) Kinetics of Golgi apparatus membrane flux following monensin treatment of embryogenic carrot cells. Eur J Cell Biol 30: 25–32

    PubMed  Google Scholar 

  • —,Schnepf E, Deichgräber G (1986) Inhibition of elongation inPellia setae by the monovalent ionophor monensin. Bot Gaz 147: 252–257

    Google Scholar 

  • Noguchi T, Ueda K (1981) Effect of metabolic inhibitors on the formation of cell walls in a green alga,Micrasterias crux-meli-tensis. Plant and Cell Physiol 22: 1437–1445

    Google Scholar 

  • Pope DG, Thorpe JR, Al-Azzawi MJ, Hall JL (1979) The effect of cytochalasin B on the rate of growth and ultrastructure of wheat coleoptiles and maize roots. Planta 144: 373–383

    Google Scholar 

  • Pressmann BC, Fahim M (1982) Pharmacology and toxicology of the monovalent carboxylic ionophores. Ann Rev Pharmacol Toxicol 22: 465–490

    Google Scholar 

  • Quader H (1983) Morphology and movement of cellulose synthesizing (terminal) complexes inOocystis solitaria: Evidence that microfibril assembly is the motive force. Eur J Cell Biol 32: 174–177

    PubMed  Google Scholar 

  • Reiss H-D, Herth W (1980) Effects of the broad-range ionophore X-537 A on pollen tubes ofLilium longiflorum. Planta 147: 292–301

    Google Scholar 

  • —,Schnepf E, Herth W (1984) The plasma membrane of theFunaria hygrometrica caulonema tip cell: morphology and distribution of particle rosettes, and the kinetics of cellulose synthesis. Planta 160: 428–435

    Google Scholar 

  • Rudolph U (1987) Occurrence of rosettes in the ER membrane of youngFunaria hygrometrica protonemata. Naturwiss 74: 439

    Google Scholar 

  • Schmiedel G, Schnepf E (1979 a) Side branche formation and organization in the caulonema of the moss,Funaria hygrometrica: Normal development and fine structure. Protoplasma 100: 367–383

    Google Scholar 

  • — — (1979 b) Side branche formation and organization in the caulonema of the moss,Funaria hygrometrica: Experiments with inhibitors and with centrifugation. Protoplasma 101: 47–59

    Google Scholar 

  • — — (1980) Polarity and growth of caulonema tip cells of the mossFunaria hygrometrica. Planta 147: 405–413

    Google Scholar 

  • Schnepf E, Hridina B, Lehne A (1982) Spore germination, development of the microtubule system and protonema cell morphogenesis in the moss,Funaria hygrometrica: Effects of inhibitors and of growth substances. Biochem Physiol Pflanzen 177: 461–482

    Google Scholar 

  • — (1983) Light-dependent, monensin induced thylakoid swelling. Naturwiss 70: 260

    Google Scholar 

  • —,Witte O, Rudolph U, Deichgräber G, Reiss H-D (1985) Tip cell growth and the frequency and distribution of particle rosettes in the plasmalemma: Experimental studies inFunaria protonema cells. Protoplasma 127: 222–229

    Google Scholar 

  • Seagull RW, Falconer MM, Weerdenburg CA (1987) Microfilaments: Dynamic arrays in higher plant cells. J Cell Biol 104: 995–1004

    Google Scholar 

  • Spooner BS (1973) Cytochalasin B: Towards an understanding of its mode of action. Develop Biol 53: f13-f18

    Google Scholar 

  • Steer MW (1985) Vesicle dynamics. In:Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford New York, pp 129–155

    Google Scholar 

  • Tannenbaum SW (1978) Cytochalasins, biochemical and cell biological aspects. Elsevier North Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Tartakoff AM (1983) Pertubation of vesicular traffic with the carboxylic ionophor monensin. Cell 32: 1026–1028

    PubMed  Google Scholar 

  • Traas JA (1984) Visualization of the membrane bound cytoskeleton and coated pits of plant cells by means of dry cleaving. Protoplasma 119: 212–218

    Google Scholar 

  • Treves S, DiVirgilio F, Vaselli GM, Pozzan T (1987) Effects of cytochalasin on cytosolic free calcium concentration and phosphoinositide metabolism in leucocytes. Exp Cell Res 168: 285–298

    PubMed  Google Scholar 

  • Witte O (1984) Über das Wachstum jungerFunaria Protonemen und die Rosettenverteilung im Plasmalemma unter Normalbedingungen und unter dem Einfluß von Colchicin. Diplomarbeit Heidelberg

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, U., Schnepf, E. Investigations of the turnover of the putative Cellulose-synthesizing particle “rosettes” within the plasma membrane ofFunaria hygrometrica protonema cells. Protoplasma 143, 63–73 (1988). https://doi.org/10.1007/BF01282960

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282960

Keywords

Navigation