Skip to main content
Log in

Experimental and ultrastructural studies on cell shape formation in the defect mutant cellmicrasterias thomasiana f. uniradiata

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Cell development and ultrastructure are studied in the defect mutant cellMicrasterias thomasiana f. uniradiata which lacks cell pattern at one side of the cell.

The ultrastructural studies reveal an uneven distribution of vesicles, preponderating at the normally growing side of the cell, as well as the presence of a special kind of dark vesicles.

By means of turgor reduction and treatment with chlorotetracycline and cycloheximide some processes involved in cell shape formation are pointed out and are compared with those already described for biradiateMicrasterias cells.

It is demonstrated that the asymmetric cell shape of the mutant cell is already determined at the early stage of bulb formation and is due to a unilateral growth during the later stages of development. The asymmetric arrangement of the growth areas during cell development of the mutant is expressed by an asymmetric distribution of primary wall accumulations induced by turgor reduction as well as by the presence of fluorescence zones after treatment with the Ca2+ -chelate probe chlorotetracycline at only one side of the cell. Inhibition of protein synthesis by cycloheximide during cell growth of the mutant leads to the formation of a characteristically reduced cell pattern (“anuclear type of development”) similar to that ofMicrasterias denticulata andMicrasterias thomasiana under the same conditions. Nevertheless, this cell pattern develops at only one side of the cell, indicating that the mutant does not have any information for cell pattern formation at the defective side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caswell, A. H., 1972: The migration of divalent cations in mitochondria visualized by a fluorescent chelate probe. J. Membr. Biol.7, 345–364.

    Google Scholar 

  • —, 1979: Methods for measuring intracellular calcium. Int. Rev. Cytol.56, 145–181.

    Google Scholar 

  • —,Hutchison, J. D., 1971: Selectivity of chelation to tetracyclines: evidence for special conformation of calcium chelate. Biochem. Biophys. Res. Com.43 (3), 525–630.

    Google Scholar 

  • Chandler, D. E., Williams, J. A., 1978: Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe. J. Cell Biol.76, 371–385.

    Google Scholar 

  • Chen, T. H., Jaffe, L. F., 1979: Forced calcium entry and polarized growth ofFunaria spores. Planta144, 401–406.

    Google Scholar 

  • Dieter, P., Marmé, D., 1980: Ca2+ transport in mitochondrial and microsomal fraction from higher plants. Planta150 1–8.

    Google Scholar 

  • — —, 1981: A calmodulin-dependent, microsomal ATP-ase from corn (Zea mays L.) FEBs Letters125 (2), 245–248.

    Google Scholar 

  • Dobberstein, B., 1973: Einige Untersuchungen zur Sekundärwandbildung vonMicrasterias denticulata de Brébisson (Desmidiaceae). Nova Hedwigia42, 83–90.

    Google Scholar 

  • —,Kiermayer, O., 1972: Das Auftreten eines besonderen Typs von Golgivesikel während der Sekundärwandbildung vonMicrasterias denticulata Bréb. Protoplasma75, 185–194.

    Google Scholar 

  • Drawert, H., Mix, M., 1961: Licht- und elektronenmikroskopische Untersuchungen an Desmidiaceen. VII. Mitt. Der Golgi-Apparat vonMicrasterias rotata nach Fixierung mit Kaliumpermanganat und Osmiumtetroxyd. Mikroskopie16, 207–212.

    Google Scholar 

  • — —, 1962: Zur Funktion des Golgi-Apparates in der Pflanzenzelle. Planta58, 448–452.

    Google Scholar 

  • Ennis, H. L., Lubin, M., 1964: Cycloheximide: Aspects of inhibition of protein synthesis in mammalian cells. Science146, 1474–1476.

    Google Scholar 

  • Gratzl, M., 1980: Transport of membranes and vesicle contents during exocytosis. In: Biological chemistry of organelle formation (Bücher, Th., Seebald, W., Weiss, H., eds.). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Grotha, R., 1983: Chlorotetracycline-binding surface regions in gemmalings ofRiella helicophylla (Bory et Mont.). Planta158, 473–481.

    Google Scholar 

  • Hackstein-Anders, Ch., 1974: Untersuchungen zur Wirkung von Actinomycin D und Ethidiumbromid auf die Cytomorphogenese und Ultrastruktur vonMicrasterias thomasiana undMicrasterias denticulata Bréb. unter besonderer Berücksichtigung des Golgi-Apparates. Thesis (Köln).

  • —, 1975: Untersuchungen zur Cytomorphogenese vonMicrasterias thomasiana undMicrasterias denticulata Bréb. unter Einfluß von Actinomycin D und Ethidiumbromid. I. Lichtmikroskopische Untersuchungen. Protoplasma86, 83–105.

    Google Scholar 

  • Hampl, S., 1984: Beeinflussung der Cytomorphogenese vonMicrasterias denticulata Bréb. durch Proteinsyntheseblocker. Thesis (Salzburg).

  • Haussner, I., Herth, W., 1983: The Ca2+-chelating antibiotic chlorotetracycline (CTC) disturbes multipolar tip growth and primary wall formation inMicrasterias. Protoplasma117, 167–173.

    Google Scholar 

  • Jaffe, L. A., Weisenseel, M. H., Jaffe, L. F., 1975: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol.67, 488–492.

    Google Scholar 

  • Kallio, P., 1951: The significance of nuclear quantity in the genusMicrasterias. Ann. Bot. Soc. Bot. Fenn. Vanamo24, 1–122.

    Google Scholar 

  • —, 1953: On the morphogenetics of desmids. Bull. Torrey. Bot. Clu.80, 247–263.

    Google Scholar 

  • Kallio, P., 1957: Studies on artificially produced diploid forms of someMicrasterias species (Desmidiaceae). Arch. Soc. Zool. Bot. Fenn. Vanamo11, 193–204.

    Google Scholar 

  • —, 1959: The relationship between nuclear quantity and cytoplasmic units inMicrasterias. Ann. Acad. Sci. Fenn. IV,44, 1–44.

    Google Scholar 

  • —, 1963: The effect of ultraviolet radiation and some chemicals on morphogenesis inMicrasterias. Ann. Acad. Sci. Fenn.70, 5–39.

    Google Scholar 

  • —,Lethonen, J., 1981: Nuclear control of morphogenesis inMicrasterias. In: Cytomorphogenesis in plants (Kiermayer, O., ed.). Wien-New York: Springer.

    Google Scholar 

  • Kiermayer, O., 1962: Die Rolle des Turgordrucks bei der Formbildung vonMicrasterias. Ber. dtsch. bot. Ges.75, 78–81.

    Google Scholar 

  • —, 1964: Untersuchungen über die Morphogenese und Zellwandbildung beiMicrasterias denticulata Bréb. Protoplasma59, 382–420.

    Google Scholar 

  • —, 1965:Micrasterias denticulata (Desmidiaceae)—Morphogenese. Film E 868, Inst. Wiss. Film, Göttingen.

    Google Scholar 

  • —, 1967: Das Septum-Initialmuster vonMicrasterias denticulata und seine Bildung. Protoplasma64, 481–484.

    Google Scholar 

  • —, 1968: The distribution of microtubules in differentiating cells ofMicrasterias denticulata Bréb. Planta83, 223–236.

    Google Scholar 

  • —, 1970a: Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese vonMicrasterias denticulata Bréb. I. Allgemeiner Überblick. Protoplasma69, 97–132.

    Google Scholar 

  • —, 1970b: Causal aspects of cytomorphogenesis inMicrasterias. Ann. N.Y. Acad. Sci.175, 686–701.

    Google Scholar 

  • —, 1971: Elektronenmikroskopischer Nachweis spezieller cytoplasmatischer Vesikel beiMicrasterias denticulata Bréb. Planta86, 74–80.

    Google Scholar 

  • —, 1977: Biomembranen als Träger morphogenetischer Information. Naturwiss. Rundschau30 (5), 161–165.

    Google Scholar 

  • —, 1980: Control of morphogenesis inMicrasterias. In: Handbook of phycological methods. Developmental and cytological methods (Gantt, E., ed.), pp. 6–12. Cambridge: University Press.

    Google Scholar 

  • —, 1981: Cytoplasmic basis of morphogenesis inMicrasterias. In: Cytomorphogenesis in plants (Kiermayer, O., ed.). Wien-New York: Springer.

    Google Scholar 

  • —,Dobberstein, B., 1973: Membrankomplexe dictyosomaler Herkunft als „Matrizen“ für die extraplasmatische Synthese und Orientierung von Mikrofibrillen. Protoplasma77, 437–451.

    Google Scholar 

  • —,Jarosch, R., 1962: Die Formbildung vonMicrasterias rotata Ralfs und ihre experimentelle Beeinflussung. Protoplasma54, 382–420.

    Google Scholar 

  • —,Meindl, U., 1980a: Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese vonMicrasterias denticulata Bréb. III. Einfluß von Cycloheximid auf die Bildung und Ultrastruktur der Primärwand. Protoplasma103, 169–177.

    Google Scholar 

  • —, 1980b: Cytomorphogenetic and anti-microtubule action of the antibiotic gougerotin inMicrasterias denticulata Bréb. Protoplasma104, 175–179.

    Google Scholar 

  • — —, 1984: Interaction of the Golgi apparatus and the plasmalemma in the cytomorphogenesis ofMicrasterias. In: Compartments in algal cells and their interaction (Wiessner, W., Robinson, D., Starr, R. C., eds.). Berlin-Heidelberg: Springer.

    Google Scholar 

  • Kunzmann, R., Kiermayer, O., 1978: Über die Wirkung verschiedener Antibiotika auf sich differenzierende Zellen vonMicrasterias denticulata. Sitzungsber. Österr. Akad. Wiss., math.-nat. Kl., Abt.I,187, 233–255.

    Google Scholar 

  • Lacalli, T. C., 1975a: Morphogenesis inMicrasterias. I. Tip growth. J. Embryol. exp. Morph.33, 95–115.

    Google Scholar 

  • —, 1975b: Morphogenesis inMicrasterias. II. Patterns of morphogenesis. J. Embryol. exp. Morph.33 (1), 117–126.

    Google Scholar 

  • —, 1976: Morphogenesis inMicrasterias. III. The morphogenetic template. Protoplasma88, 133–146.

    Google Scholar 

  • Lütkemüller, J., 1902: Die Zellmembran der Desmidiaceen. Beitr. Biol. Pflanz.8, 347–418.

    Google Scholar 

  • Meindl, U., 1981: Störung der Cytomorphogenese vonMicrasterias denticulata durch Hemmung der Proteinsynthese. Film D 1425 Inst. Wiss. Film, Göttingen.

    Google Scholar 

  • —, 1982a: Local accumulations of membrane associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence. Protoplasma110, 143–146.

    Google Scholar 

  • —, 1982b: Patterned distribution of membrane-associated Ca2+ during pore formation inMicrasterias. Protoplasma112, 138–141.

    Google Scholar 

  • —, 1984: Helical structures in the cytoplasm of differentiating cells ofMicrasterias thomasiana. Protoplasma123, 230–232.

    Google Scholar 

  • —, 1985: Aberrant nuclear migration and microtubule arrangement in a defect mutant cell ofMicrasterias thomasiana. Protoplasma126, 74–90.

    Google Scholar 

  • Menge, U., 1976: Ultracytochemische Untersuchungen anMicrasterias denticulata Bréb. Protoplasma88, 287–303.

    Google Scholar 

  • —,Kiermayer, O., 1977a: Dictyosomen vonMicrasterias denticulata Bréb. — ihre Größenveränderung während des Zellzyklus. Protoplasma91, 115–123.

    Google Scholar 

  • — —, 1977b: Beobachtung zur Struktur der Dictyosomen vonMicrasterias denticulata Bréb. Mikroskopie33, 168–176.

    Google Scholar 

  • Miller, J. H., Vogelmann, Th. C., Bassels, A. R., 1983: Promotion of fern rhizoid elongation by metal ions and the function of the spore coat as an ion reservoir. Plant. Physiol.71, 828–834.

    Google Scholar 

  • Mix, M., 1966: Licht- und elektronenmikroskopische Untersuchungen an Desmidiaceen. XII. Zur Feinstruktur der Zellwände und Mikrofibrillen einiger Desmidiaceen vomCosmarium-Type. Arch. Mikrobiol.55, 116–133.

    Google Scholar 

  • Noguchi, T., Ueda, K., 1979: Effect of cycloheximide on the ultrastructure of cytoplasm in cells of a green alga,Micrasterias crux melitensis. Biol. Cell.35, 103–110.

    Google Scholar 

  • Neuhaus-Url, G., Kiermayer, O., 1982: Observations of microtubules and microtubule-microfilament associations in osmotically treated cells ofMicrasterias denticulata Bréb. Europ. J. Cell Biol.27, 206–212.

    Google Scholar 

  • Pickett-Heaps, J. D., 1972: Cell division inCosmarium botrytis. J. Phycol.8, 343–360.

    Google Scholar 

  • —,Fowke, L. C., 1970: Mitosis, cytokinesis, and cell elongation in the desmidClosterium littorale. J. Phycol.6, 189–215.

    Google Scholar 

  • Picton, J. M., Steer, M. W., 1983: Evidence for the role of Ca2+ ions in tip extension in pollen tubes. Protoplasma115, 11–17.

    Google Scholar 

  • Pihakaski, K., Kallio, P., 1978: Effect of denucleation and UV-irradiation on the subcellular morphology inMicrasterias. Protoplasma95, 37–55.

    Google Scholar 

  • Polito, V. S., 1983: Membrane-associated calcium during pollen grain germination: A microfluorometric analysis. Protoplasma117, 226–232.

    Google Scholar 

  • Reiss, H. D., Herth, W., 1978: Visualization of Ca2+-gradient in growing pollen tubes ofLilium longiflorum with chlorotetracycline fluorescence. Protoplasma97, 373–377.

    Google Scholar 

  • — —, 1979: Calcium gradient in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta146, 615–621.

    Google Scholar 

  • — —,Schneph, E., Nobiling, R., 1983: The tip-to-base calcium gradient in pollen tubes ofLilium longiflorum measured by proton-induced X-ray emission (PIXE). Protoplasma115, 153–159.

    Google Scholar 

  • Saunders, M. J., Hepler, P. K., 1981: Localization of membrane-associated calcium following cytokinin treatment inFunaria using chlorotetracycline. Planta152, 272–281.

    Google Scholar 

  • — —, 1982: Calcium ionophore A23187 stimulates cytokinin—like mitosis inFunaria. Science217, 943–945.

    Google Scholar 

  • Selman, G. G., 1966: Experimental evidence for the nuclear control of differentiation inMicrasterias. J. embryol. exp. Morph.16, 469–485.

    Google Scholar 

  • Sievers, A., Schnepf, E., 1981: Morphogenesis and polarity of tubular cells with tip growth. In: Cytomorphogenesis in plants (Kiermayer, O., ed.). Wien-New York: Springer.

    Google Scholar 

  • Täljedal, I. B., 1978: Chlorotetracycline as a fluorescent Ca2+ probe in pancreatic islet cells. Methodological aspects and effects of alloxan, sugars, methylxanthines, and Mg2+. J. Cell Biol.76, 652–674.

    Google Scholar 

  • Tippit, D. H., Pickett-Heaps, J. D., 1974: Experimental investigations into morphogenesis inMicrasterias. Protoplasma81, 271–296.

    Google Scholar 

  • Tourte, M., 1972: Modifications morphogénétiques induites par la puromycine et la cycloheximide sur leMicrasterias fimbriata (Ralfs) au cours du bourgeonnement. C. R. Acad. Sci. (Paris)274, 2295–2298.

    Google Scholar 

  • Treiblmayr, K., Pohlhammer, K., 1974: Die Verwendung eines Mikrofiltergerätes bei der Fixierung und Entwässerung kleiner biologischer Objekte in der Elektronenmikroskopie. Mikroskopie30, 229–233.

    Google Scholar 

  • Ueda, K., 1972: Electron microscopical observation on nuclear division inMicrasterias americana. Bot. Mag. (Tokyo)85, 263–271.

    Google Scholar 

  • —,Noguchi, T., 1976: Transformation of the Golgi-apparatus in the cell cycle of a green algaMicrasterias americana. Protoplasma87, 145–162.

    Google Scholar 

  • —,Yoshioka, S., 1976: Cell wall development ofMicrasterias americana, especially in isotonic and hypertonic solutions. J. Cell Sci.21, 617–631.

    Google Scholar 

  • Vazquez, D., 1979: Inhibition of protein-biosynthesis. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Waris, H., 1950a: Cytophysiological studies onMicrasterias. I. Nuclear and cell division. Physiol. Plant3, 1–16.

    Google Scholar 

  • —, 1950b: Cytophysiological studies onMicrasterias. II. The cytoplasmic framework and its mutation. Physiol. Plant.3, 236–246.

    Google Scholar 

  • —, 1958: Splitting of the nucleus by centrifuging inMicrasterias. Ann. Acad. Sci. fenn. A. IV. Biologica40, 1–20.

    Google Scholar 

  • —,Kallio, P., 1964: Morphogenesis inMicrasterias. Advan. Morphogen.4, 45–80.

    Google Scholar 

  • ——, 1972: Effects of enucleation onMicrasterias. In: Biology and radiobiology of anucleate systems II. Plant Cells (Bonotto, S., Goutier, R., Kirchmann, R., Maisin, J.-R., eds.), pp. 137–144. New York-London: Academic Press.

    Google Scholar 

  • Wayne, R., Hepler, P. K., 1984: The role of calcium ions in phytochrome-mediated germination of spores ofOnoclea sensibilis L. Planta160, 12–20.

    Google Scholar 

  • Weisenseel, M. H., Jaffe, L. F., 1976: The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta133, 1–7.

    Google Scholar 

  • —,Kicherer, R. M., 1981: Ionic currents as control mechanism in cytomorphogenesis. In: Cytomorphogenesis in plants (Kiermayer, O., ed.). Wien-New York: Springer.

    Google Scholar 

  • —,Nuccitelli, R., Jaffe, L. F., 1975: Large electrical currents traverse growing pollen tubes. J. Cell Biol.66, 556–567.

    Google Scholar 

  • Wick, S. M., Hepler, P. K., 1980: Localization of Ca2+-containing antimonate precipitates during mitosis. J. Cell Biol.86, 500–513.

    Google Scholar 

  • Wolniak, S. M., Hepler, P. K., Jackson, W. T., 1983: Ionic changes in the mitotic apparatus at the metaphase/anaphase transition. J. Cell Biol.96, 598–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meindl, U. Experimental and ultrastructural studies on cell shape formation in the defect mutant cellmicrasterias thomasiana f. uniradiata . Protoplasma 129, 74–87 (1985). https://doi.org/10.1007/BF01282307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282307

Keywords

Navigation