Skip to main content
Log in

Effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin on the dopaminergic and cholinergic receptors as evaluated by positron emission tomography in the Rhesus monkey

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

The effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (R-THBP) on the central cholinergic and dopaminergic systems in the Rhesus monkey brain were investigated by positron emission tomography (PET) with the muscarinic cholinergic receptor ligands (N-[11C]methyl-benztropine) and dopaminergic receptor ligands selective for D1 D2, and D3 subtypes ([11C]SCH23390, N-[11C]methyl-spiperone, and (+)[11C]UH232, respectively). None of the doses (3, 10, and 30 mg/kg i.v.) of R-THBP used significantly affected the regional cerebral blood flow (rCBF as determined by Raichle's H2 15O method), and 10 mg/kg of R-THBP had little effect on the regional cerebral metabolic rate of glucose (rCMRglc) in the Rhesus monkey brain, as assessed by the graphical [18F]fluoro-deoxyglucose method. The effect of R-THBP on the muscarinic cholinergic system was dose dependent; while 3 mg/kg of R-THBP did not significantly alter the uptake ratio of N-[11C]methyl-benztropine in several brain regions to that in the cerebellum, 10 and 30 mg/kg of R-THBP significantly reduced the uptake ratio in the thalamus, as well as in the frontal and temporal cortices. None of the doses (3, 10, and 30 mg/kg i.v.) of R-THBP tested affected [11C]SCH23390 (dopamine D1 receptor) binding. However, the k3 value for N-[11C]methyl-spiperone (dopamine D2 receptor) binding, which represents the association rate × Bmax value, was significantly decreased in the striatum. The uptake ratio of (+)[11C]UH232 (dopamine D3 receptor) in the striatum to that in the cerebellum was also decreased by administration of R-THBP (3 and 30 mg/kg i.v.). These findings suggest that R-THBP acts on dopamine D2 and D3 receptors selectively without markedly affecting dopamine D1 receptor binding. Furthermore, the changes in cholinergic and dopamine D2 and D3 receptors in vivo can not be attributed to a change in rCBF but may depend on the action of R-THBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R-THBP :

6R-L-erythro-5,6,7,8-tetrahydrobiopterin

PET :

positron emission tomography

rCBF :

regional cerebral blood flow

rCMRglc :

regional cerebral metabolic rate of glucose

References

  • Arnett CD, Shine C-Y, Wolf AP, Fowler JS, Logan J, Watanabe M (1985) Comparision of three18F-butyrophenone neuroleptic drugs in the baboon using positron emission tomography. J Neurochem 44: 835–844

    Google Scholar 

  • Bartholome K (1974) A new molecular defect in phenylketonuria. Lancet ii: 1580

    Google Scholar 

  • Bartus RT, Dean RL, Flicker C (1987) Cholinergic psychopharmacology: an integration of human and animal research on memory. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 219–232

    Google Scholar 

  • Biegon A, Earley B, Hanau M, Segal M (1988) Aging and muscarinic receptor subtypes: autoradiographic analysis in rat and human brain. Soc Neurosci Abstr 14: 509.6

    Google Scholar 

  • Bullard WP, Guthrie PB, Russo PU, Mandell AJ (1978) Regional and subcellular distribution and some factors in the regulation of reduced pterins in rat brain. J Pharmacol Exp Ther 206: 4–20

    Google Scholar 

  • Cortés R, Gueye B, Pazos A, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28: 263–273

    Google Scholar 

  • Curtius H-Ch, Niederwieser A, Levine RA, Lovenberg W, Woggon B, Angest J (1983) Successful treatment of depression with tetrahydrobiopterin. Lancet i: 657–658

    Google Scholar 

  • Curtius H-Ch, Niederwieser A, Levine RA, Muldner H (1984) Therapeutic efficacy of tetrahydrobiopterin in Parkinson's disease. In: Hassler RG, Christ JF (eds) Advances in neurology, vol 40. Raven Press, New York, pp 463–466

    Google Scholar 

  • Dank DM, Cotton RGH, Schlesinger P (1975) Tetrahydrobiopterin treatment of variant form of phenylketonuria. Lancet ii: 1043

    Google Scholar 

  • DeKeyser J, Claeys A, DeBacker JP, Ebinger G, Roels F, Vauquelin G (1988) Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci Lett 91: 142–147

    Google Scholar 

  • Dewey SL, MacGregor RR, Brodie JD, Bendriem B, King PT, Volkow ND, Schlyer DJ, Fowler JS, Wolf AP, Gatley SJ, Hitzemann R (1990a) Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 5: 213–223

    Google Scholar 

  • Dewey SL, Volkow J, Logan J, MacGregor RR, Fowler JS, Schlyer DJ, Bendriem B (1990b) Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J Neurosci Res 27: 569–575

    Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system: a relationship to aging? Arch Neurol 30: 113–121

    Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Scdvall G (1987) PET analysis of human dopamine receptor subtypes using11C-SCH23390 and11C-raclopride. Psychopharmacology 92: 278–284

    Google Scholar 

  • Frey KA, Koeppe RA, Mulholland GK, Kuhl DE (1990) Quantification of regional cerebral muscarinic receptors in human brain with the use of [C-11]tropanyl benzilate and positron emission tomography. J Nucl Med 31: 779

    Google Scholar 

  • Friedman E, Lerer B, Kuster J (1983) Loss of cholinergic neurons in the rat neocortex produces deficit in passive avoidance learning. Pharmacol Biochem Behav 19: 309–312

    Google Scholar 

  • Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner HN Jr (1987) In vivo binding of3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40: 987–995

    Google Scholar 

  • Fukushima T, Nixon JC (1980) Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem 102: 176–188

    Google Scholar 

  • Hall H, Farde L, Sedvall G (1988) Humlan dopamine receptor subtypes — in vitro binding analysis using3H-SCH23390 and3H-raclopride. J Neural Transm 73: 7–21

    Google Scholar 

  • Hirotsu I, Tani Y, Nunokawa Y, Nakamura S, Ohno T, Ishihara T, Kanai T (1992) Effect of sapropterin dihydrochloride in rats with hyperphenylalaninemia due to defective synthesis of tetrahydrobiopterin. Pharmacometrics 43: 549–553

    Google Scholar 

  • Hyttel J (1983) SCH23390 — the first selective dopamine D1 antagonist. Eur J Pharmacol 91: 153–154

    Google Scholar 

  • Ishihara T, Hirotsu I, Horikawa Y, Kihara T, Kanai T (1989) Neuropharmacology of R-tetrahydrobiopterin in mice. In: Levine RA, Milstein S, Kuhn DM, Crutius H-Ch (eds) Pterins and biogenic amines in neurology, pediatrics and immunology. Lakeshore Publishing Company, Grosse Pointe, pp 285–303

    Google Scholar 

  • Knapp S, Irwin M (1989) Plasma levels of tetrahydrobiopterin and folate in major depression. Biol Psychiatry 26: 156–162

    Google Scholar 

  • Koshimura K, Miwa S, Lee K, Fujiwara M, Watanabe Y (1990) Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin. J Neurochem 54: 1391–1397

    Google Scholar 

  • Leenders KL. Antonini A, Thomann R, Locher JT, Maitre L, Gerebtzoff A, Beer H-F, Ametamey S, Weinreich R, Gut A, Gnirss F, Ofner S, Schilling W, Waldmeier PC (1993) Savoxepine: striatal dopamine-D2 receptor occupancy in human volunteers measured using positron emission tomography (PET). Eur J Pharmacol 44: 135–140

    Google Scholar 

  • Lin S-C, Olson KC, Okazaki H, Richelson E (1986) Studies on muscarinic binding sites in human brain identified with [3H] pirenzepine. J Neurochem 46: 274–279

    Google Scholar 

  • Lovenberg W, Jequier E, Sjoerdsma A (1967) Tryptohan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science 155: 217–219

    Google Scholar 

  • Lovenberg W, Levine RA, Robinson DS, Ebert M, Williams AD, Calne DB (1979) Hydroxylase cofactor activity in cerebrospinal fluid of normal subjects and patients with Parkinson's disease. Science 204: 624–626

    Google Scholar 

  • Lyon R, Titeler M, Frost J, Whitehouse P, Wong D, Wagner HN Jr, Dannals R, Links J, Kuhar M (1986) [3H]-N-Methylspiperone labels D2 dopamine in basal ganglia and S2 serotonin receptors in cerebral cortex. J Neurosci 6: 2941–2949

    Google Scholar 

  • Mataga N, Imamura K, Tani Y, Ishihara T, Noguchi T, Koshimura K, Miwa S, Watanabe Y (1990) Enhanced neurotransmitter release by 6R-L-erythro-tetrahydrobiopterin as studied by brain microdialysis technique. In: Blau H, Curtius H-Ch, Levine RA, Cotton RGH (eds) Pteridine and related biogenic amines in neuropsychiatry, pediatrics, and immunology. Lakeshore Publishing Company, Grosse Pointe, pp 313–324

    Google Scholar 

  • Mataga N, Imamura K, Watanabe Y (1991) 6R-Tetrahydrobiopterin perfusion enhances dopamine, serotonin, and glutamate outputs in dialysate from rat striatum and frontal cortex. Brain Res 551: 64–71

    Google Scholar 

  • Meyer E (1989) Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET. J Nucl Med 30: 1069–1078

    Google Scholar 

  • Miller L, Insel T, Scheinin M, Aloi J, Murphy DL, Linnoila M, Lovenberg W (1986) Tetrahydrobiopterin administration to rhesus macaques. Its appearance in CSF and effect on neurotransmitter synthesis. Neurochem Res 11: 291–298

    Google Scholar 

  • Miwa S, Watanabe Y, Hayaishi O (1985) 6R-L-erythro-5,6,7,8-tetrahydrobiopterin as a regulator of dopamine and serotonin biosynthesis in the rat brain. Arch Biochem Biophys 239: 234–241

    Google Scholar 

  • Morar C, Whitburn CB, Blair JA, Leeming RJ, Wilcock GK (1983) Tetrahydrobiopterin metabolism in senile dementia of Alzheimer type. J Neurol Neurosurg Psychiatry 46: 582–583

    Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239: 2910–2917

    Google Scholar 

  • Nagatsu T, Yamaguchi T, Kato T, Sugimoto T, Matsuura S, Akino M, Nagatsu I, Iizuka R, Narabayashi H (1981) Biopterin in human brain and urine from controls and Parkinsonian patients: application of a new radioimmunoassay. Clin Chem Acta 109: 305–311

    Google Scholar 

  • Narabayashi H, Kondo T, Nagatsu T, Sugimoto T, Matsuura S (1982) Tetrahydrobiopterin administration for Parkinsonian symptoms. Proc Japan Acad 58: 283–287

    Google Scholar 

  • Naruse H, Hayashi T, Takesada M, Nakane A, Yamazaki K, Noguchi T, Watanabe Y, Hayaishi O (1987) Therapeutic effect of tetrahydrobioterin in infantile autism. Proc Japan Acad 63: 231–233

    Google Scholar 

  • Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, Warpman U, Johansson M, Hellström-Lindahl E, Bjurling P, Fasth K-J, Långström B, Winblad B (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13: 747–758

    Google Scholar 

  • Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B (1993) 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology 110: 265–272

    Google Scholar 

  • Ohue T, Koshimura K, Lee K, Watanabe Y, Miwa S (1991) A novel action of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin, a cofactor for hydroxylases of phenylalanine, tyrosine and tryptohan: enhancement of acetylcholine release in vivo in the rat hippocampus. Neurosci Lett 128: 93–96

    Google Scholar 

  • Ohue T, Koshimura K, Akiyama Y, Watanabe Y, Miwa S (1992) Monoaminemediated enhancement of acetylcholine release in rat hippocampus by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin. Brain Res 570: 173–179

    Google Scholar 

  • Ohue T, Koshimura K, Takagi Y, Watanabe Y, Miwa S, Masaki T (1993) Enhancement of acetylcholine release in the hippocampus by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin is mediated by 5-hydroxytryptamine. Brain Res 607: 225–260

    Google Scholar 

  • Phelps MJ, Mazziotta H, Schelbert H (1986) Positron emission tomography and autoradiography: principles and applications for the brain and heart. Raven Press, New York

    Google Scholar 

  • Prado-Alcala RA, Fernández-Samblancat M, Solodkin-Herrera M (1985) Injections of atropine into the caudate nucleus impair the acquisition and the maintenance of passive avoidance. Pharmacol Biochem Behav 22: 243–247

    Google Scholar 

  • Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 24: 790–798

    Google Scholar 

  • Sawada M, Nagatsu T (1987) Distribution of pterins in biological tissues. In: Lovenberg M, Levine RA (eds) Unconjugated pterin in neurobiology: basic and clinical aspects. Taylor & Francis, London New York Philadelphia, pp 131–156

    Google Scholar 

  • Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151

    Google Scholar 

  • Suzuki S, Watanabe Y, Tsubokura S, Kagamiyama H, Hayaishi O (1988) Decrease in tetrahydrobiopterin content and neurotransmitter amine biosynthesis in rat brain by an inhibitor of guanosine triphosphate cyclohydrolase. Brain Res 446: 1–10

    Google Scholar 

  • Svensson K, Johansson AM, Magnusson T, Carlsson A (1986) (+)-AJ76 and (+)-UH232: central stimulates acting as preferential dopamine autoreceptor antagonist. Naunyn Schmiedebergs Arch Pharmacol 334: 234–245

    Google Scholar 

  • Tani Y, Mataga N, Ishihara T, Kanai T, Watanabe Y, Noguchi T (1992) Intracellular content of 6R-tetrahydrobiopterin may regulate dopamine release from rat striatum. In: Naruse H, Ornitz EM (eds) Neurobiology of infantile autism. Elsevier Science Publishers B.V., Amsterdam, pp 335–336

    Google Scholar 

  • Tedroff J, Aquilonius S-M, Laihinen A, Rinne U, Hartvig P, Andersson J, Lundqvist H, Haaparanta M, Solin O, Antoni G, Gee AD, Ulin J, Långström B (1990) Striatal kinetics of [11C]-(+)-nomifensine and 6-[18F]fluoro-L-dopa in Parkinson's disease measured with positron emission tomography. Acta Neurol Scand 81: 24–30

    Google Scholar 

  • Van der Weide J, De Vries JB, Tepper DG, Horn AS (1987) The effects of kainic acid and 6-hydroxydopamine lesions, metal ions and GTP on in vitro binding of the D-2 dopamine agonist, [3H]N-0437, to striatal membranes. Eur J Pharmacol 143: 101–107

    Google Scholar 

  • Van der Weide J, Tendijck MEC, Tepper PG, De Vries JB, Dubocovich ML, Horn AS (1988) The enantiomers of D-2 dopamine receptor agonist N-0437 discriminate between pre- and postsynaptic dopamine receptors. Eur J Pharmacol 146: 319–326

    Google Scholar 

  • Watanabe Y, Hartvig P, Tedroff J, Bjurling P, Miwa S, Hayashi T, Noguchi T, Långström B(1991) Elevation of11C-dopamine turnover in vivo by peripheral administration of 6R-tetrahydrobiopterin in monkey striatum. In: Blau N, Curtius H-Ch, Levine RA, Cotton RGH (eds) Pterins and biogenic amines in neurology, pediatrics and immunology. Lakeshore Publishing Company, Grosse Pointe, pp 353–362

    Google Scholar 

  • Watanabes Yu, Mataga N, Hayashi T, Ishihara T, Kanai T, Noguchi T, Miwa S, Watanabe Y (1992) Molecular mechanisms of tetrahydrobiopterin action on neurotransmitter release. Pteridine 3: 63–64

    Google Scholar 

  • Waters N, Lagerkvist S, Löfberg L, Piercey M, Carlsson A (1993) The dopamine D3 receptor and autoreceptor preferring antagonists (+)AJ76 and (+)UH232; a microdialysis study. Eur J Pharmacol 242: 151–163

    Google Scholar 

  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss W-D (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5: 115–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, Y., Ishihara, T., Kanai, T. et al. Effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin on the dopaminergic and cholinergic receptors as evaluated by positron emission tomography in the Rhesus monkey. J. Neural Transmission 102, 189–208 (1995). https://doi.org/10.1007/BF01281154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281154

Keywords

Navigation