Skip to main content
Log in

Vacuole biogenesis and protein transport to the plant vacuole: A comparison with the yeast vacuole and the mammalian lysosome

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The vacuole is often termed the lytic compartment of the plant cell. The yeast cell also possesses a vacuole containing acid hydrolases. In animal cells these enzymes are localized in the lysosome. Recent research suggests that there is good reason to regard these organelles as homologous in terms of protein transport. Although sorting motifs for the recognition of “vacuolar proteins” within the endomembrane system differ between the three organelles, there is an underlying similarity in targeting determinants in the cytoplasmic tails of Golgi-based receptors. In all three cases these determinants appear to interact with adaptins of clathrin-coated vesicles which ferry their cargo first of all to an endosomal compartment. The situation in sorting and targeting of plant vacuolar proteins is complicated by the fact that storage and lytic vacuoles may exist together in the same cell. The origin of these two types of vacuole is also a matter of some uncertanity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

assembly protein

ALP:

alkaline phosphatase

ARF:

adenosine diphosphate ribosylation factor

BiP:

immunoglobulin binding protein

CCV:

clathrin coated vesicle

CPY:

carboxypeptidase-Y

DPAP:

dipeptidyl aminopeptidase

ER:

endoplasmic reticulum

GApp:

Golgi apparatus

LAMPs:

lysosomal associated membrane protein(s)

LAP:

lysosomal acid phosphatase

LIMPs:

lysosomal integral membrane protein(s)

MPRs:

mannosyl 6-phosphate receptors

MVB:

multivesicular bodies

NSF:

N-ethylmaleimide sensitive fusion (protein)

PAT:

phosphinotricine acetyltransferase

PB:

protein body

PHA:

phytohemagglutinin

PM:

plasma membrane

PSV:

protein storage vacuole

SNAPs:

soluble NSF attachment protein(s)

SNAREs:

SNAP receptor(s)

TGN:

trans Golgi network

TIP:

tonoplast integral protein

VPS:

vacuolar protein sorting

ZIO:

zinc iodide/osmium

References

  • Adler K, Müntz K (1983) Origin and development of protein bodies in cotyledons ofVicia faba. Planta 157: 401–410

    Google Scholar 

  • Amelunxen F, Heinze U (1984) Zur Entwicklung der Vakuole in Testa-Zellen des Leinsamens. Eur J Cell Biol 35: 343–354

    Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133: 1251–1263

    PubMed  Google Scholar 

  • Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Plant Mol Biol 47: 159–184

    PubMed  Google Scholar 

  • Bassham DC, Gal S, da Silva Conceicao A, Raikhel NV (1995) AnArabidopsis syntaxin homologue isolated by functional complementation of a yeast pep 12 mutant. Proc Natl Acad Sci USA 92: 7262–7266

    PubMed  Google Scholar 

  • Becker B, Melkonian M (1995) Intra-Golgi transport mediated by vesicles? Bot Acta 108: 172–173

    Google Scholar 

  • Bednarek SY, Reynold TL, Schroeder M, Grabowski L, Gallwitz D, Raikhel NV (1994) A small GTP-binding protein fromArabidopsis thaliana functionally complements the yeast YPT6 null mutant. Plant Physiol 104: 591–596

    PubMed  Google Scholar 

  • —, Wilkins TA, Dombrowski JE, Raikhel NV (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2: 1145–1155

    PubMed  Google Scholar 

  • Beevers L (1996) Clathrin-coated vesicles in plants. Int Rev Cytol 167: 1–35

    Google Scholar 

  • Bleekemolen JE, Stein M, Figura K von, Slot JW, Geuze HJ (1988) The two mannose 6-phosphatase receptors have almost identical subcellular distributions in U937 monocytes. Eur J Cell Biol 47: 366–372

    PubMed  Google Scholar 

  • Boiler T, Wiemken A (1987) Dynamics of vacuolar compartmentation. Annu Rev Plant Physiol 37: 137–164

    Google Scholar 

  • Braulke T (1996) Origin of lysosomal proteins. In: Lloyd JB, Mason RW (eds) Subcellular biochemistry, vol 27, biology of the lysosome. Plenum, New York, pp 15–49

    Google Scholar 

  • Callis J (1995) Regulation of protein degradation. Plant Cell 7: 845–857

    PubMed  Google Scholar 

  • Campbell CH, Rome LH (1983) Coated vesicles from rat liver and calf brain contain lysosomal enzymes bound to mannose 6-phosphate receptors. J Biol Chem 258: 13347–13352

    PubMed  Google Scholar 

  • Cantor AB, Baranski TJ, Kornfeld S (1992) Lysosomal enzyme phosphorylation. II. Protein recognition determinants in either lobe of procathepsin D are sufficient for phosphorylation of both the amino and carboxyl lobe oligosaccharides. J Biol Chem 267: 23349–23356

    PubMed  Google Scholar 

  • Casey RD (1979) Immunoaffinity chromatography as a means of purifying legumin fromPisum (pea) seeds. Biochem J 177: 509–520

    PubMed  Google Scholar 

  • Chao H-J, Waheed A, Pohlmann R, Hille A, Figura K von (1990) Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J 9: 3507–3513

    PubMed  Google Scholar 

  • Chapman R, Munro S (1994) The functioning of the yeast Golgi apparatus requires an ER protein encoded by ANP1, a member of a new family of genes affecting the secretory pathway. EMBO J 13: 4896–4907

    PubMed  Google Scholar 

  • Chen Y-J, Stevens TH (1996) The VPS8 gene is required for localization and trafficking of the CPY sorting reception inSaccharomyces cerevisiae. Eur J Cell Biol 70: 289–297

    PubMed  Google Scholar 

  • Cheon C-I, Lee N-G, Siddique A-BM, Bal AK, Verma DPS (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12: 4125–4135

    PubMed  Google Scholar 

  • Chiang H-L, Schekman R (1991) Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 350: 313–318

    PubMed  Google Scholar 

  • Chrispeels MJ (1983) The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotyledons. Planta 158: 140–151

    Google Scholar 

  • — (1985) The role of the Golgi apparatus in the transport and post-translational modifications of vacuolar (protein body) proteins. Oxford Surv Plant Mol Cell Biol 2: 43–68

    Google Scholar 

  • — (1991) Sorting of proteins in the secretory system. Annu Rev Plant Physiol Plant Mol Biol 42: 21–53

    Google Scholar 

  • —, Raikhel N (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1–9

    PubMed  Google Scholar 

  • —, Higgins TJV, Craig S, Spencer D (1982) Role of the endoplasmic reticulum in the synthesis of reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J Cell Biol 93: 5–14

    PubMed  Google Scholar 

  • Clark DW, Tkacz JS, Lampen JO (1982) Asparagine-linked carbohydrate does not determine the cellular location of yeast vacuolar nonspecific alkaline phosphatase. J Bacteriol 152: 865–873

    PubMed  Google Scholar 

  • Cooper AA, Stevens TH (1996) VPS10p cycles between the late Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133: 529–541

    PubMed  Google Scholar 

  • Corvera S, Folander K, Clairmont KB, Czech MP (1988) A highly phosphorylated subpopulation of insulin-like growth factor II/mannose-6-phosphate receptors is in a clathrin-enriched plasma membrane fraction. Proc Natl Acad Sci USA 85: 7567–7571

    PubMed  Google Scholar 

  • Coulomb S, Coulomb S (1996) Endocytosis inCucurbita pepo root meristems: coated vesicles, multivesicular bodies and vacuole relationship. C R Acad Sci Paris III 319: 377–383

    Google Scholar 

  • Craig S, Goodchild DJ (1984) Periodate-acid treatment of sections permits on-grids immunogold localization of pea seed vicilin in ER and Golgi. Protoplasma 122: 35–44

    Google Scholar 

  • — —, Hardham AR (1979) Structural aspects of protein accumulation in developing pea cotyledons. I. Qualitative and quantitative changes in parenchyma cell vacuoles. Aust J Plant Physiol 6: 81–98

    Google Scholar 

  • — —, Miller C (1980) Structural aspects of protein accumulation in developing pea cotyledons. II. Three-dimensional reconstructions of vacuoles and protein bodies from serial sections. Aust J Plant Physiol 7: 329–337

    Google Scholar 

  • Davis NG, Horecka JL, Sprayve GF (1993) Trans-acting and cisacting functions required for endocytosis of the yeast pheromone receptors. J Cell Biol 122: 53–65

    PubMed  Google Scholar 

  • De Camilli P, Takei K, McPherson PS (1996) The function of dynamin in endocytosis. Curr Opin Neurobiol 5: 559–565

    Google Scholar 

  • Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cells can occur via a default pathway. Plant Cell 2: 51–59

    PubMed  Google Scholar 

  • Deurs B van, Holm PK, Kayser L, Sandvig K, Hansen SH (1993) Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur J Cell Biol 61: 208–224

    PubMed  Google Scholar 

  • Dhar U, Vijayaraghavan MR (1979) Ontogeny, structure and breakdown of protein bodies inLinum usitatissimum Linn. Ann Bot 43: 107–111

    Google Scholar 

  • Diaz C, Van Spronsen PC, Bakhuizen R, Logman GJJ, Lugtenberg EJJ, Kyne JW (1986) Correlation between infection byRhizobium leguminosarium and lectin on the surface ofPisum sativum L. roots. Planta 168: 350–359

    Google Scholar 

  • Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15: 305–309

    PubMed  Google Scholar 

  • Dittié AS, Hajibagheri N, Tooze SA (1996) The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADP-ribosylation factor. J Cell Biol 132: 523–536

    PubMed  Google Scholar 

  • Dombrowski JE, Schroeder MR, Bednarek SY, Raikhel NV (1993) Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5: 587–596

    PubMed  Google Scholar 

  • Dong Z, McCully ME, Canny MJ (1994) Retention of vacuole contents of plant cells during fixation. J Microsc 175: 222–228

    Google Scholar 

  • Dustin ML, Baranski TJ, Sampath D, Kornfeld S (1995) A novel mutagenesis strategy identifies distantly spaced amino acid sequences that are required for the phosphorylation of both the oligosaccharides of procathepsin D by N-acetylglucosamine 1-phosphotransferase. J Biol Chem 270: 170–179

    PubMed  Google Scholar 

  • Fernandez DE, Staehelin LA (1985) Structural organization of ultrarapidly frozen barley aleurone cells actively involved in protein secretion. Planta 165: 455–468

    Google Scholar 

  • Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370: 191–193

    PubMed  Google Scholar 

  • Futter CE, Pearse A, Hewlett LJ, Hopkins CR (1996) Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol 132: 1011–1023

    PubMed  Google Scholar 

  • Gal S, Raikhel NV (1993) Protein sorting in the endomembrane system of plant cells. Curr Opin Cell Biol 5: 636–640

    PubMed  Google Scholar 

  • Galway ME, Rennie PJ, Fowke LC (1993) Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen/freeze-substituted protoplasts of white spruce (Picea glauca). J Cell Sci 106: 847–858

    PubMed  Google Scholar 

  • Gaudreault PR, Beevers L (1984) Protein bodies and vacuoles as lysosomes. Investigations into the role of mannose-6-phosphate in intracellular transport of glycosidases in pea cotyledons. Plant Physiol 76: 228–232

    Google Scholar 

  • Geli MI, Torrent M, Ludevid D (1994) Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6: 1911–1922

    PubMed  Google Scholar 

  • Geuze HJ, Morré DJ (1991) Trans-Golgi reticulum J Electron Microsc 17: 24–34

    Google Scholar 

  • —, Slot JW, Strous GJ, Lodish HF, Schwartz AL (1983) The pathway of the asialoglycoprotein-ligand during receptor-mediated endocytosis: a morphological study with colloidal gold/ligands in the human hepatoma cell line Hep G2. Eur J Cell Biol 32: 38–44

    PubMed  Google Scholar 

  • — — —, Hasilik A, Figura K von (1985) Possible pathways for lysosomal enzyme delivery. J Cell Biol 101: 2253–2262

    PubMed  Google Scholar 

  • —, Stoorvogel W, Strous GJ, Slot JW, Zijderhand-Bleekemolen J, Mellman I (1989) Sorting of mannose 6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles. J Cell Biol 107: 2491–2501

    Google Scholar 

  • Goldstein JL, Brown MS, Anderson RGW, Russel DW, Schneider WJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1: 1–39

    PubMed  Google Scholar 

  • Gomez L, Chrispeels MJ (1993) Tonoplast and soluble vacuolar proteins are targeted by different mechanisms. Plant Cell 5: 1113–1124

    PubMed  Google Scholar 

  • Gomord V, Faye L (1996) Signals and mechanisms involved in intracellular transport of secreted proteins in plants. Plant Physiol Biochem 34: 165–181

    Google Scholar 

  • Graham TR, Krasnow VA (1995) Sorting of yeast a 1,3 mannosyltransferase is mediated by a lumenal domain interaction and a transmembrane signal that can confer clathrin-dependent Golgi localization to a secreted protein. Mol Biol Cell 6: 809–824

    PubMed  Google Scholar 

  • —, Seeger M, Payne GS, McKay VL, Emr SD (1994) Clathrin-dependent localization of a 1,3 mannosyltransferase to the Golgi complex ofSaccharomyces cerevisiae. J Cell Biol 127: 667–678

    PubMed  Google Scholar 

  • Griffing LR (1991) Comparisons of Golgi structure and dynamics in plant and animals cells. J Electron Microsc Techn 17: 179–199

    Google Scholar 

  • —, Fowke LC (1985) Cytochemical localization of peroxidase in soybean suspension cultured cells and protoplasts: intracellular vacuole differentiation and presence of peroxidase in coated vesicles and multivesicular bodies. Protoplasma 128: 22–30

    Google Scholar 

  • Griffiths G, Gruenberg J (1991) The arguments for pre-existing early and late endosomes. Trends Cell Biol 1: 5–9

    Google Scholar 

  • —, Doms RW, Mayhew T, Lucocq J (1995) The bulk-flow hypothesis: not quite the end. Trends Cell Biol 5: 9–13

    PubMed  Google Scholar 

  • Gruenberg J, Howell KE (1989) Membrane traffic in endocytosis: insights from cell-free assays. Annu Rev Cell Biol 5: 453–481

    PubMed  Google Scholar 

  • Guruprasad K, Tömäkangas K, Kervinin J, Blundell TL (1994) Comparative modelling of barley grain aspartic proteinase: a structural rationale for observed hydrolytic specificity. FEBS Lett 352: 131–136

    PubMed  Google Scholar 

  • Haas A, Wickner W (1996) Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec 18p (yeast NSF). EMBO J 15: 13

    Google Scholar 

  • Hara-Nishimura I, Takenchi Y, Inoue K, Nishimura M (1993) Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J 4: 793–800

    PubMed  Google Scholar 

  • Shimada T, Hiraiwa N, Nishimura M (1995) Vacuolar processing enzyme responsible for maturation of seed proteins. J Plant Physiol 145: 632–640

    Google Scholar 

  • Harley SM, Beevers L (1989) Coated vesicles are involved in the transport of storage proteins during seed development inPisum sativum L. Plant Physiol 91: 674–678

    Google Scholar 

  • Harris N, Boulter D (1976) Protein body formation in cotyledons of developing cowpea (Vigna unguiculata) seeds. Ann Bot 40: 739–744

    Google Scholar 

  • —, Grindley H, Mulchrone J, Croy JD (1989) Correlated in situ hybridisation and immunochemical studies of legumin storage protein deposition in pea (Pisum sativum L.). Cell Biol Int Rep 13: 23–35

    Google Scholar 

  • Hattori T, Ichihara S, Nakamura K (1987) Processing of a plant vacuolar precursor in vitro. Eur J Biochem 166: 533–538

    PubMed  Google Scholar 

  • Hepler PK (1981) The structure of the endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26: 102–110

    Google Scholar 

  • Herman EM (1994) Multiple origins of intravacuolar protein accumulation of plant cells. Adv Struct Biol 3: 243–283

    Google Scholar 

  • —, Hankins CN, Shannon LM (1988) Bark and leaf lectins ofSophora japonica are sequestered in protein-storage vacuoles. Plant Physiol 86: 1027–1031

    Google Scholar 

  • —, Li X, Su RT, Hsu H-T, Sze H (1994) Vacuolar-type H+-ATPases are associated with the endoplasmic reticulum and provacules of root tip cells. Plant Physiol 106: 1313–1324

    PubMed  Google Scholar 

  • Herman PK, Stack JH, Emr SD (1991) A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of VPs15 in vacuolar protein delivery. EMBO J 10: 4049–4060

    PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807

    PubMed  Google Scholar 

  • Higo H, Kishimoto N, Saito K (1994) Molecular cloning and characterization of a cDNA encoding a small GTP-binding protein related to mammalian ADP-ribosylation factor from rice. Plant Sci 100: 41–49

    Google Scholar 

  • Hille A, Klumpermann J, Geuze JH, Peters C, Brodsky FM, Figura K von (1992) Lysosomal acid phosphatase is internalized via clathrin-coated pits. Eur J Cell Biol 59: 106–115

    PubMed  Google Scholar 

  • Hille-Rehfeld A (1995) Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim Biophys Acta 1241: 177–194

    PubMed  Google Scholar 

  • Hilling B, Amelunxen F (1985) On the development of the vacuole. II. Further evidence for endoplasmic reticulum origin. Eur J Cell Biol 38: 195–200

    Google Scholar 

  • Hillmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplasts using lectin-gold conjugates. Eur J Cell Biol 42: 142–149

    Google Scholar 

  • —, Bush DS, Robinson DG, Zingen-Sell I, Jones RL (1990) Barley aleurone protoplasts are structurally and functionally similar to the walled cells of aleurone layers. Eur J Cell Biol 52: 169–173

    PubMed  Google Scholar 

  • Hinz G, Hoh B, Robinson DG (1993) Strategies in the isolation of storage protein receptors. J Exp Bot 44 Suppl: 351–357

    Google Scholar 

  • — —, Hohl I, Robinson DG (1995) Stratification of storage proteins in the protein storage vacuole of developing cotyledons ofPisum sativum L. J Plant Physiol 145: 437–442

    Google Scholar 

  • Höfte H, Chrispeels MJ (1992) Protein sorting to the vacuolar membrane. Plant Cell 4: 995–1004

    PubMed  Google Scholar 

  • —, Faye L, Dickinson C, Herman EM, Chrispeels MJ (1991) The protein-body proteins phytohemagglutinin and tonoplast intrinsic protein are targeted to vacuoles in leaves of transgenic tobacco. Planta 184: 431–437

    Google Scholar 

  • —, Hubbard L, Reizer J, Ludevid D, Herman EM, Chrispeels MJ (1992) Vegetative and seed-specific forms of tonoplast intrinsic protein in the vacuolar membrane ofArabidopsis thaliana. Plant Physiol 99: 561–570

    Google Scholar 

  • Hoh B, Schauermann G, Robinson DG (1991) Storage protein poly-peptides in clathrin coated vesicle fractions from developing pea cotyledons are not due to endomembrane contamination. J Plant Physiol 138: 309–316

    Google Scholar 

  • —, Hinz G, Jeong B-K, Robinson DG (1995) Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci 108: 299–310

    PubMed  Google Scholar 

  • Hohl I, Robinson DG, Chrispeels MJ, Hinz G (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 19: 2539–2550

    Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4: 307–318

    PubMed  Google Scholar 

  • Hong A, Verma DPS (1994) A phosphatidolinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci USA 91: 9617–9621

    PubMed  Google Scholar 

  • Hopkins CR, Gibson A, Shipman M, Strickland DK, Trowbridge IS (1994) In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J Cell Biol 125: 1265–1274

    PubMed  Google Scholar 

  • Hübner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells. Evidence obtained using heavy metal salt solutions. Protoplasma 129: 214–222

    Google Scholar 

  • Jadot M, Canfield WM, Gregory W, Kornfeld S (1992) Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor. J Biol Chem 267: 11069–11077

    PubMed  Google Scholar 

  • Johnson KD, Herman EM, Chrispeels MJ (1989) An abundant, highly conserved tonoplast protein in seeds. Plant Physiol 91: 1006–1013

    Google Scholar 

  • Johnson KF, Chan W, Kornfeld S (1990) Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain. Proc Natl Acad Sci USA 87: 10010–10014

    PubMed  Google Scholar 

  • Jones RL, Robinson DG (1989) Protein secretion in plants. New Phytol 111: 567–597

    Google Scholar 

  • Kane PM, Stevens TH (1992) Subunit composition, biosynthesis, and assembly of the yeast vacuolar protein-locating ATPase. J Bioenerg Biomembr. 24: 383–393

    PubMed  Google Scholar 

  • Keijzer CJ, Reinders MC, Leferink-Ten Klooster HB (1996) The mechanics of the grass flower: the extension of the staminal filaments and the locules of maize: Ann Bot 77: 675–683

    Google Scholar 

  • Kim WT, Franceschi VR, Krishnan HB, Okita TW (1988) Formation of wheat protein bodies: involvement of the Golgi apparatus in gliadin transport. Planta 176: 173–182

    Google Scholar 

  • Kirsch T, Paris N, Butler M, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91: 3403–3407

    PubMed  Google Scholar 

  • —, Saalbach G, Raikhel NV, Beevers L (1996) Interaction of a potential vacuolar targeting receptor with amino- and carboxylterminal targeting determinants. Plant Physiol 111: 469–474

    PubMed  Google Scholar 

  • Kjemtrup S, Borkhsenious O, Raikhel NV, Chrispeels MJ (1995) Targeting and release of phytohemagglutinin from the roots of bean seedlings. Plant Physiol 109: 603–610

    PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8: 2241–2250

    PubMed  Google Scholar 

  • —, Banta LM, Emr SD (1988) Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8: 2105–2116

    PubMed  Google Scholar 

  • Klumperman J, Hille A, Veenendaal T, Oorschot V, Stoorvogel W, Figura K von, Geuze HJ (1993) Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J Cell Biol 121: 997–1010

    PubMed  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5: 483–525

    PubMed  Google Scholar 

  • Kristen U, Biedermann M (1981) Ultrastructure, origin, and composition of the protein bodies in the ligule ofIsoetes lacustns L. Ann Bot 48: 655–663

    Google Scholar 

  • Kyle DJ, Styles ED (1977) Development of aleurone and sub-aleurone layers in maize. Planta 137: 185–193

    Google Scholar 

  • Leidreiter K, Kruse A, Heinecke D, Robinson DG, Heldt H-W (1995) Subcellular volumes and metabolite concentrations in potato (Solanum tuberosum cv. Desiree) leaves. Bot Acta 108: 439–444

    Google Scholar 

  • Lemansky P, Hasilik A, Figura K von, Helmy S, Fishman J (1987) Lysosomal enzyme precursors in coated vesicles derived from the exocytic and endocytic pathways. J Cell Biol 104: 1743–1748

    PubMed  Google Scholar 

  • Lemmon SK, Lemmon VP, Jones EW (1988) Characterization of yeast clathrin and anticlathrin heavy-chain monoclonal antibodies. J Cell Biochem 36: 329–340

    PubMed  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119: 1117–1128

    PubMed  Google Scholar 

  • Marcusson EG, Horazdorsky BF, Cereghino JL, Garakhuniun E, Emr SD (1994) The sorting receptor for yeast vacuolar carboxypeptidase Y encoded by the VPS10 gene. Cell 77: 579–586

    PubMed  Google Scholar 

  • Marquardt T, Braulke T, Hasilik A, Figura K von (1987) Association of the precursor of cathepsin D with coated membranes. Kinetics and carbohydrate processing. Eur J Biochem 168: 37–42

    PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione Stransferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127–158

    PubMed  Google Scholar 

  • Marttila S, Tenbola T, Mikkonen A (1996) A barley (Hordeum vulgar L.) LEA3 protein, HVA1, is abundant in protein storage vacuoles. Planta 199: 602–611

    Google Scholar 

  • Marty F (1973a) Mise en évidence d'un appareil provacuolaire et de son role dans l'autophagie cellulaire et l'origine des vacuoles. C R Acad Sci Paris D 276: 1549–1552

    Google Scholar 

  • — (1973b) Dissemblance des faces golgiennes et activité des dictyosomes dans les cellules en cours de vacuolisation de la racine d'Euphorbia characias L. C R Acad Sci D 277: 1749–1752

    Google Scholar 

  • — (1973c) Sites reactifs a l'iodure de zinc-tetroxyde d'osmium dans les cellules de la racine d'Euphorbia characias L. C R Acad Sci D 277: 1317–1320

    Google Scholar 

  • — (1978) Cytochemical studies on GERL, provacuoles and vacuoles in root meristematic cells ofEuphorbia. Proc Natl Acad Sci USA 75: 852–856

    Google Scholar 

  • — (1980) High voltage electron microscopy of membrane interactions in wheat. J Histochem Cytochem 28: 1129–1132

    PubMed  Google Scholar 

  • — (1983) Microscopie électronique à haute tension de l'appareil provacuolaire dans les cellules méristématiques des racines de rais (Raphanus sativus L.). Ann Sci Nat Bot 13: 245–260

    Google Scholar 

  • —, Branton D, Leigh RA (1980) Plant vacuoles. In: Tolbert NE (ed) The plant cell, vol l, biochemistry of plants. Academic Press, New York, pp 625–658

    Google Scholar 

  • Marty-Mazars D, Clemencet MC, Dozolme P, Marty F (1995) Antibodies to the tonoplast from the storage parenchyma cells of beetroot recognize a major intrinsic protein related to TIPs. Eur J Cell Biol 66: 106–118

    PubMed  Google Scholar 

  • Marzella L, Glaumann H (1987) Autophagy, microautophagy. and crinophagy as mechanisms for protein degradation. In: Glaumann H, Ballard FJ (eds) Lysosomes: their role in protein breakdown. Academic Press, New York, pp 319–367

    Google Scholar 

  • Matile P (1975) The lytic compartment of plant cells. Springer, Wien New York [Alfert M et al (eds) Cell biology monographs, vol 1]

    Google Scholar 

  • Matsuoka K, Nakamura K (1992) Transport of a sweet potato storage protein sporamin to the vacuole in yeast cells. Plant Cell Physiol 33: 453–462

    Google Scholar 

  • —, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130: 1307–1318

    PubMed  Google Scholar 

  • Mauch F, Staehelin LA (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1: 447–457

    PubMed  Google Scholar 

  • Mauxion F, Le Borgne R, Munier-Lehmann H, Hoflack B (1996) A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem 271: 2171–2178

    PubMed  Google Scholar 

  • Melroy DL, Herman EM (1991) TIP, an integral membrane protein of the protein-storage vacuoles of the soybean cotyledon undergoes developmentally regulated membrane accumulation and removal. Planta 184: 113–122

    Google Scholar 

  • Monroe JD, Salminen MD, Press J (1991) Nucleotide sequence of a cDNA clone encoding β-amylase fromArabidopsis thaliana. Plant Physiol 97: 1599–1601

    Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111: 1233–1241

    PubMed  Google Scholar 

  • Morrison IN, Kuo J, O'Brian TP (1975) Histochemistry and fine structure of developing wheat aleurone cells. Planta 123: 105–116

    Google Scholar 

  • Müntz K (1989) Intracellular protein sorting and the formation of protein reserves in storage tissue cells of plant seeds. Biochem Physiol Pflanzen 185: 315–335

    Google Scholar 

  • — (1996) Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J Exp Bot 47: 605–622

    Google Scholar 

  • Mullock BM, Perez JH, Kuwana T, Gray SR, Luzio JP (1994) Lysosomes can fuse with a late endosomal compartment in a cell-free system from rat liver. J Cell Biol 126: 1173–1182

    PubMed  Google Scholar 

  • Murphy RF (1991) Maturation models for endosome and lysosome biogenesis. Trends Cell Biol 1: 77–82

    PubMed  Google Scholar 

  • Myers M, Forgac M (1993) The coated vesicle vacuolar (H+)-ATP-ase associates with and is phosphorylated by the 50-kDa polypeptide of clathrin assembly protein ATP-2. J Biol Chem 268: 9184–9186

    PubMed  Google Scholar 

  • Narváez-Vàesquez J, Franceschi VR, Ryan CA (1993) Proteinaseinhibitor synthesis in tomato plants: evidence for extracellular deposition in roots through the secretory pathway. Planta 189: 257–266

    Google Scholar 

  • Nelson N (1992a) The vacuolar H+-ATPase: one of the most fundamental pumps in nature. J Exp Biol 172: 19–27

    PubMed  Google Scholar 

  • — (1992b) Structure and function of V-ATPase in endocytic and secretory organelles. J Exp Biol 172: 149–153

    PubMed  Google Scholar 

  • Neuhaus J-M (1996) Protein targeting to the plant vacuole. Plant Physiol Biochem 34: 217–221

    Google Scholar 

  • —, Pietrzak M, Boller T (1994) Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J 5: 45–54

    PubMed  Google Scholar 

  • Nothwehr SF, Stevens TH (1994) Sorting of membrane proteins in the yeast secretory pathway. J Biol Chem 269: 10185–10188

    PubMed  Google Scholar 

  • —, Robert CJ, Stevens TH (1993) Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues. J Cell Biol 121: 1197–1209

    PubMed  Google Scholar 

  • —, Conibear E, Stevens TH (1995) Golgi and vacuolar membrane proteins reach the vacuole invpsl mutant yeast cells via the plasma membrane. J Cell Biol 129: 35–46

    PubMed  Google Scholar 

  • —, Bryant NJ, Stevens TH (1996) The newly identified yeastGRD genes are required for retention of late-Golgi membrane proteins. Mol Cell Biol 16: 2700–2707

    PubMed  Google Scholar 

  • Nuoffer C, Balch WE (1994) GTPases: multifunctional molecular switches regulating vesicular traffic. Annu Rev Biochem 63: 949–990

    PubMed  Google Scholar 

  • Oberbeck K, Drucker M, Robinson DG (1994) V-type ATPase and pyrophosphatase in endomembranes of maize roots. J Exp Bot 45: 235–244

    Google Scholar 

  • Ohno H, Steart J, Fournier M-C, Bosshart H, Rhee I, Miyatake S, Saito T, Galluser A, Kirchhausen T, Bonifacino JS (1995) Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269: 1872–1875

    PubMed  Google Scholar 

  • Okita TW, Rogers JC (1996) Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol 47: 327–350

    PubMed  Google Scholar 

  • Paravicini G, Horndovsky BF, Emr SD (1992) Alternative pathways for the sorting of soluble vacuolar proteins in yeast: a vps35 null mutant missorts and secrets only a subset of vacuolar hydrolases. Mol Biol Cell 3: 415–427

    PubMed  Google Scholar 

  • Paris N, Rogers JC (1996) The role of receptors in targeting soluble proteins from the secretory pathway to the vacuole. Plant Physiol Biochem 34: 223–227

    Google Scholar 

  • —, Stanley MC, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572

    PubMed  Google Scholar 

  • Pavelka M (1987) Functional morphology of the Golgi apparatus. Adv Anat Embryol Cell Biol 106: 1–96

    PubMed  Google Scholar 

  • Payne GS, Hasson TB, Hasson MS, Schekman R (1987) Genetic and biochemical characterization of clathrin-deficientSaccharomyces cerevisiae, Mol Cell Biol 7: 3888–3898

    PubMed  Google Scholar 

  • Pearse BMF (1985) Assembly of the mannose-6-phosphate receptor into reconstituted clathrin coats. EMBO J 4: 2457–2460

    PubMed  Google Scholar 

  • —, Robinson MS (1990) Clathrin, adaptors, and sorting. Annu Rev Cell Biol 6: 151–171

    PubMed  Google Scholar 

  • Pedrazzini E, Vitale A (1996) The binding protein (BiP) and the synthesis of secretory proteins. Plant Physiol Biochem 34: 207–216

    Google Scholar 

  • Pernollet JC (1978) Protein bodies of seeds: ultrastructure, biochemistry, biosynthesis and degradation. Phytochem 17: 1473–1480

    Google Scholar 

  • Pfeffer SR, Rothman JE (1987) Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem 56: 829–852

    PubMed  Google Scholar 

  • Rad MR, Phan HL, Kirchrath L, Tan PK, Kirchhausen T, Hollenberg CP, Payne GS (1995)Saccharomyces cerevisiae AP12p, a homologue of the mammalian AP β subunit, plays a role in clathrin-dependent Golgi functions. J Cell Sci 108: 1605–1615

    PubMed  Google Scholar 

  • Raymond CK, Howard-Stevendon I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3: 1389–1402

    PubMed  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44: 157–180

    Google Scholar 

  • Record RD, Griffing LR (1988) Convergence of the endocytic and lysosomal pathways in soybean protoplasts. Planta 176: 425–432

    Google Scholar 

  • Regad F, Bardet C, Tremousaygue D, Moisan A, Lescure B, Axelos M (1993) cDNA cloning and expression of anArabidopsis GTP-binding protein of the ARF family. FEBS Lett 316: 133–136

    PubMed  Google Scholar 

  • Reynolds TL, Raikhel NV (1996) Targeting and trafficking of vacuolar proteins. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publishers, Oxford, pp 403–420

    Google Scholar 

  • Roberts CJ, Pohling G, Rothrnan JH, Stevens TH (1989) Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole. J Cell Biol 108: 1363–1373

    PubMed  Google Scholar 

  • —, Nothwehr SF, Stevens TH (1992) Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol 119: 69–83

    PubMed  Google Scholar 

  • Robinson DG (1985) Plant membranes: endo- and plasma membranes of plant cells. Wiley, New York

    Google Scholar 

  • — (1996a) Pyrophosphatase is not (only) a vacuolar marker. Trends Plant Sci 1: 330

    Google Scholar 

  • — (1996b) Clathrin-mediated trafficking. Trends Plant Sci 1: 349–355

    Google Scholar 

  • —, Hillmer S (1990) Coated pits. In: Larsson C, Møller IM (eds) The plant plasma membrane. Springer, Berlin Heidelberg New York Tokyo, pp 233–255

    Google Scholar 

  • —, Hinz G (1996) Multiple mechanisms of protein body formation in pea cotyledons. Plant Physiol Biochem 34: 155–163

    Google Scholar 

  • —, Balusek K, Freundt H (1989) Legumin antibodies recognize polypeptides in coated vesicles from developing pea cotyledons. Protoplasma 150: 79–82

    Google Scholar 

  • —, Höh B, Hinz G, Jeong B-K (1995) One vacuole or two vacuoles: do protein storage vacuoles arise de novo during pea cotyledon development? J Plant Physiol 145: 654–664

    Google Scholar 

  • —, Haschke H-P, Hinz G, Hoh B, Maeshima M, Marty F (1996) Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta 198: 95–103

    Google Scholar 

  • Rogers JC, Dean D, Heck GR (1985) Aleurain: a barley thiol protease closely related to mammalian cathepsin H. Proc Natl Acad Sci USA 82: 6512–6516

    PubMed  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63

    PubMed  Google Scholar 

  • —, Warren G (1994) Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol 4: 220–233

    PubMed  Google Scholar 

  • Rothman JH, Hunter CP, Vails LA, Stevens TH (1986) Overproduction-induced mislocalization of yeast vacuolar protein allows isolation of its structural gene. Proc Natl Acad Sci USA 83: 3248–3252

    PubMed  Google Scholar 

  • —, Raymond CK, Gilbert T, O'Hara PJ, Stevens TH (1990) A putative GTP-binding protein homologous to interferon-inducible mx proteins performs an essential function in yeast protein sorting. Cell 61: 1063–1074

    PubMed  Google Scholar 

  • Rubin R, Levanony H, Galili G (1992) Evidence for the presence of two different protein bodies in wheat endosperm. Plant Physiol 99: 718–724

    Google Scholar 

  • Runeberg-Roos P, Törmäkangas K, Östman A (1991) Primary structures of a barley grain aspartic proteinase: a plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem 202: 1021–1027

    PubMed  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28: 425–449

    Google Scholar 

  • Saalbach G, Jung R, Kunze G, Saalbach I, Adler K, Müntz K (1991) Different legumin protein domains act as vacuolar targeting signals. Plant Cell 3: 695–708

    PubMed  Google Scholar 

  • Sahagian GG, Steer CJ (1985) Transmembrane orientation of the mannose-6-phosphate receptor in isolated clathrin-coated vesicles. J Biol Chem 260: 9838–9842

    PubMed  Google Scholar 

  • Samuels AI, Bisalputra T (1990) Endocytosis in elongating root cells ofLobelia erinus. J Cell Sci 97: 157–165

    Google Scholar 

  • Sandoval IV, Brakke O (1994) Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol 4: 292–297

    PubMed  Google Scholar 

  • Schaewen A van, Chrispeels MJ (1993) Identification of vacuolar sorting information in phytohemagglutinin, an unprocessed vacuolar protein. J Exp Bot 44: 339–342

    Google Scholar 

  • Schmid SL, Damke H (1995) Coated vesicles: a diversity of form and function. FASEB J 9: 1445–1453

    PubMed  Google Scholar 

  • Schroeder MR, Borkhsenious ON, Matsuoka K, Nakamura K, Raikhel NV (1993) Co-localization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol 101: 451–458

    PubMed  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260: 88–91

    PubMed  Google Scholar 

  • Schwaiger H, Hasilik A, Figura K von, Wiemken A, Tanner W (1982) Carbohydrate-free carboxy-peptidase Y is transferred into the lysosome-like yeast vacuole. Biochem Biophys Res Commun 104: 950–956

    PubMed  Google Scholar 

  • Seeger M, Payne GS (1992a) A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast. EMBO J 11: 2811–2818

    PubMed  Google Scholar 

  • — — (1992b) Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention inSaccharomyces cerevisiae. J Cell Biol 118: 531–540

    PubMed  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7: 945–956

    PubMed  Google Scholar 

  • Silveira LA, Wong DH, Masiarz FR, Schekman R (1990) Yeast clathrin has a distinctive light chain that is important for cell growth. J Cell Biol 111: 1437–1449

    PubMed  Google Scholar 

  • Sonnewald U, Studer D, Rocha-Sosa M, Wilmitzer L (1989) Immunocytochemical localization of patatin, the major glycoprotein in potato (Solanum tuberosum L.) tubers. Planta 178: 176–183

    Google Scholar 

  • —, Schaewen A von, Willmitzer L (1990) Expression of mutant patatin protein in transgenic tobacco plants: role of glycans and intracellular location. Plant Cell 2: 345–355

    PubMed  Google Scholar 

  • Sosa MA, Schmidt B, Figura K von, Hille-Rehfeld A (1993) In vitro binding of plasma membrane-coated vesicle adaptors to the cytoplasmic domain of lysosomal acid phosphatase. J Biol Chem 268: 12537–12543

    PubMed  Google Scholar 

  • Stack JH, Emr SD (1994) Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269: 31552–31562

    PubMed  Google Scholar 

  • —, Horazdovsky B, Emr SD (1995) Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding protein. Annu Rev Cell Dev Biol 11: 1–33

    PubMed  Google Scholar 

  • Staehelin LA, Moore I (1995) The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu Rev Plant Physiol Mol Biol 46: 261–288

    Google Scholar 

  • Stamnes MA, Rothman JE (1993) The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73: 999–1005

    PubMed  Google Scholar 

  • Staswick PE (1990) Novel regulation of vegetative storage protein genes. Plant Cell 2: 1–6

    PubMed  Google Scholar 

  • Stein M, Zijderhand-Bleekemolen JE, Geuze H, Hasilik A, Figura K von (1987) Mr 46,000 mannose 6-phosphate specific receptor: its role in targeting of lysosomal enzymes. EMBO J 6: 2677–2681

    PubMed  Google Scholar 

  • Stevens TH, Rothman JH, Payne GS, Schekman R (1986) Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol 102: 1551–1557

    PubMed  Google Scholar 

  • Sticher L, Hinz U, Meyer AD, Meins F Jr (1992) Intracellular transport and processing of a tobacco vacuolar β-1,3-glucanase. Planta 188: 559–565

    Google Scholar 

  • Stoorvogel W, Oorschot V, Geuze HJ (1996) A novel class of clathrin-coated vesicles budding from endosomes. J Cell Biol 132: 21–33

    PubMed  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein— protein interactions. Nature 375: 645–653

    PubMed  Google Scholar 

  • Tague BW, Dickingson CD, Chrispeels MJ (1990) A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole. Plant Cell 2: 533–546

    PubMed  Google Scholar 

  • Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138: 173–182

    Google Scholar 

  • —, Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162: 481–486

    Google Scholar 

  • —, Rennie PJ, Fowke LC (1988) Ultrastructure of the partially coated reticulum and dictyosomes during endocytosis by soybean protoplasts. Planta 175: 433–441

    Google Scholar 

  • Tooze J, Hollinshead M (1991) Tubular early endosomal network in AtT20 and other cells. J Cell Biol 115: 635–653

    PubMed  Google Scholar 

  • —, Tooze SA (1986) Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in A1T20 cells. J Cell Biol 103: 839–850

    PubMed  Google Scholar 

  • Tranberger TJ, Franceschi VR, Hildebrand DF, Grimes HD (1991) The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell 3: 973–987

    PubMed  Google Scholar 

  • Trowbridge IS, Collawn JF, Hopkins CR (1993) Signal-dependent membrane protein targeting in the endocytic pathway. Annu Rev Cell Biol 9: 129–161

    PubMed  Google Scholar 

  • Valls LA, Hunter CP, Rothman JH, Stevens TH (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y in the propeptide. Cell 48: 887–897

    PubMed  Google Scholar 

  • Valls SA, Winther JR, Stevens TH (1990) Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. J Cell Biol 111: 361–368

    PubMed  Google Scholar 

  • Vida TA, Huyer G, Emr SD (1993) Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment. J Cell Biol 121: 1245–1256

    PubMed  Google Scholar 

  • Vigil EL, Steere RL, Christiansen MN, Erbe EF (1985) Structural changes in protein bodies of cotton radicles during seed maturation and germination. In: Robards AW (ed) Botanical microscopy. Oxford University Press, Oxford, pp 311–334

    Google Scholar 

  • Vitale A, Chrispeels MJ (1992) Sorting of proteins to the vacuoles of plant cells. Bio Essays 14: 151–160

    Google Scholar 

  • —, Ceriotti A, Denecke J (1993) The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44: 1417–1444

    Google Scholar 

  • Voelker TA, Herman EM, Chrispeels MJ (1989) In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell 1: 95–104

    PubMed  Google Scholar 

  • Ward JM, Sze H (1992) Subunit composition and organization of the vacuolar H+-ATPase from oat roots. Plant Physiol 99: 170–179

    Google Scholar 

  • Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) AtVPS34, a phosphatidylinositol 3-kinase ofArabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91: 11398–11412

    PubMed  Google Scholar 

  • Wilcox CA, Redding K, Wright R, Fuller RS (1992) Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol Biol Cell 3: 1353–1371

    PubMed  Google Scholar 

  • Wilkins TA, Bednarek SY, Raikhel NV (1990) Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2: 301–313

    PubMed  Google Scholar 

  • Wilsbach K, Payne GS (1993a) Vpslp, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention inS. cerevisiae. EMBO J 8: 3049–3059

    Google Scholar 

  • — — (1993b) Dynamic retention of TGN proteins inSaccharomyces cerevisiae. Trends Cell Biol 3: 426–431

    PubMed  Google Scholar 

  • Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44 Suppl: 231–246

    Google Scholar 

  • Wittenbach VA, Lin A, Hebert RR (1982) Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69: 98–102

    Google Scholar 

  • Yamashiro DJ, Tycko B, Fluss SR, Maxfield FR (1984) Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37: 789–800

    PubMed  Google Scholar 

  • Yoshibisha T, Anraku Y (1990) A novel pathway of import of alpha mannosidase, a marker of vacuolar membrane inSaccharomyces cervisiae. J Biol Chem 265: 22418–22425

    PubMed  Google Scholar 

  • Zhang F, Boston RS (1992) Increases in binding protein (BiP) accompany changes in protein body morphology in three highlysine mutants of maize. Protoplasma 171: 142–152

    Google Scholar 

  • Zhu Y, Conner GE (1994) Intermolecular association of lysosomal protein precursors during biosynthesis. J Biol Chem 269: 3846–3851

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.G., Hinz, G. Vacuole biogenesis and protein transport to the plant vacuole: A comparison with the yeast vacuole and the mammalian lysosome. Protoplasma 197, 1–25 (1997). https://doi.org/10.1007/BF01279880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279880

Keywords

Navigation