Skip to main content
Log in

Mathematical knowledge and the problem of proof

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

Every proof is faced with the requirement of proving that the proof is correct, and the proof of the correctness of the proof again meets the same requirement and the proof of the correctness of the correctness of the proof also, etc. In order to escape from an infinite regress into which one is led one has to come down with a purely algorithmic criterion for correctness or to claim that thinking is identical with its subject matter. Whence the preference of number and more generally of conceptualism in pure mathematics. Conceptualism is a kind of nominalism that does not give a realist understanding of mathematics (note that Platonism is not an opponent of nominalism as some seem to believe). The paper presents some examples and reflections intending to hint at the role of formal thought in the process of knowledge growth. It argues that there is no division of labor according to which certain modes of human cognition are associated with certain tasks and certain cognitive roles exclusively. In this connection, the paper claims that the subject matter of mathematical activity is represented within the system of activity by many different means. Mathematics differs in fact from logic in as much as a principle of heterogeneity or of flexible ‘means-objects-relationships’ is valid. Formalization in contrast brings forward a principle of homogeneity — that like follows like. Every subject matter requires principles homogeneous with itself. The paper tries to draw some conclusions from this difference with respect to the role of formalization within human cognitive development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsac, G. and Chapiron, G. A. O.: 1992,Initiation au Raisonnement Deductif au College, Presses Univ. de Lyon, Lyon.

    Google Scholar 

  • Bolzano, B.: 1975, in J. Berg (ed.),Einleitung zur Grössenlehre, Stuttgart-Bad Canstatt.

  • Cantor, G.: 1980,Gesammelte Abhandlungen, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Courant, R. and Robbins, H.: 1973,Was ist Mathematik?, Springer-Verlag, Berlin.

    Google Scholar 

  • Curry, H. B.: 1970,Outlines of a Formalist Philosophy of Mathematics, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Curry, H. B.: 1985, ‘Remarks on the Definition and Nature of Mathematics’, in P. Benaceraff and H. Putnam (eds.),Philosophy of Mathematics, Cambridge University Press, Cambridge, pp. 202–206.

    Google Scholar 

  • Davis, Ph. J. and Hersh, R.: 1981,The Mathematical Experience, Boston.

  • Frege, G.: 1984,Die Grundlagen der Arithmetik, Breslau.

  • Gaidenko, P.: 1981, ‘Ontologic foundation of scientific knowledge in 17th and 18th-century rationalism’, in H. N. Jahnke and M. Otte (eds.),Epistemological and Social Problems in the Sciences in the Early 19th Century, Reidel, Dordrecht, pp. 55–63.

    Google Scholar 

  • Gleick, J.: 1987,Chaos Making a New Science, Viking, New York.

    Google Scholar 

  • Goodstein, R. L.: 1963, ‘The significance of incompleteness theorems’,British Journal for the Philosophy of Science 14, 208–220.

    Google Scholar 

  • Grattan-Guinness, I.: 1979, ‘In Memoriam Kurt G ödel: His 1931 correspondence with Zermelo on his Incompletability Theorem’,Historia Mathematica 6, 294–304.

    Google Scholar 

  • Hahn, H.: 1988,Empirismus, Logik, Mathematik, Suhrkamp, Frankfurt.

    Google Scholar 

  • Hölder, O.: 1963,Anschauung und Denken in der Geometrie, Darmstadt Wissenschaftliche Buchgesellschaft, Leipzig.

    Google Scholar 

  • Hölder, O.: 1978,Die mathematische Methode, Springer, Berlin.

    Google Scholar 

  • Kant, I.: 1956,Kritik der Reinen Vernunft (citation after the 1.(A) and 2.(B) edition), Frankfurt.

  • Keitel, Ch., Otte, M. and Seeger, F.: 1980,Text, Wissen, Tätigkeit, Königstein, Ts.

    Google Scholar 

  • Maddy, P.: 1990,Realism in Mathematics, Clarendon Press, Oxford.

    Google Scholar 

  • Minsky, M. L.: 1967,Computation: Finite and Infinite Machines, Prentice Hall, Eaglewood Cliffs, NY.

    Google Scholar 

  • Nikulin, V. and Shafarevich, I. R.: 1987,Geometry and Groups, Springer, Heidelberg.

    Google Scholar 

  • Otte, M. and Steinbring, H.: 1977,Fragen der Begriffsentwicklung, Did. d. Math.

  • Otte, M.: 1990a, ‘Intuition and formalism in mathematical proof’,Interchange 21, 59–64.

    Google Scholar 

  • Otte, M.: 1990c, ‘Arithmetic and geometry: Some remarks on the concept of complementarity’,Studies in Philosophy and Education 10, 37–62.

    Google Scholar 

  • Pasch, M.: 1928, ‘Die Forderung der Entscheidbarkeit’,JDMV 37, 228–232.

    Google Scholar 

  • Petrie, H. G.: 1979, ‘Metaphor and learning’, in A. Ortony (ed.),Metaphor and Thought, CUP, pp. 438–461.

  • Poincaré, H.: 1903,Science and Hypothesis, Paris.

  • Pols, E.: 1992,Radical Realism, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Putnam, H.: 1975,Mathematics, Matter and Method; Philosophical Papers, Vol. 1, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rota, G.-C., Sherp, D. H. and Sokolowski, R.: 1988, ‘Syntax, semantics and the problem of the identity of mathematical objects’,Philosophy of Science 55, 376–386.

    Google Scholar 

  • Schlick, M.: 1913, ‘Is there intuitive knowledge?’, reprinted inSchlick, Philosophical Papers, Vol. I, Reidel, Dordrecht, 1979.

    Google Scholar 

  • Schulz von Thun, F. and Götz, W.: 1976,Mathematik verständlich erklären, München.

  • Tharp, L.: 1989, ‘Myth and mathematics: A conceptualistic philosophy of mathematics, Part I,Synthese 81, 167–201.

    Google Scholar 

  • Webb, J.: 1980,Mechanism, Mentalism, and Meta-mathematics, Reidel, Dordrecht.

    Google Scholar 

  • Weyl, H.: 1968,Gesammelte Werke, Vol. I, Springer Verlag, Heidelberg.

    Google Scholar 

  • Zermelo, E.: 1932, ‘Über Stufen der Quantifikation und die Logik des Unendlichen’, inJahresberichte der Deutschen Mathematiker-Vereinigung 41, 85–88.

    Google Scholar 

  • Zermelo, E.: 1935, ‘Grundlagen einer allgemeinen Theorie der mathematischen Satzsystemen’, inFundamenta Mathematicae 25, 136–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otte, M. Mathematical knowledge and the problem of proof. Educ Stud Math 26, 299–321 (1994). https://doi.org/10.1007/BF01279518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279518

Keywords

Navigation