Skip to main content
Log in

Apomixis for crop improvement

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Apomixis is a genetically controlled reproductive process by which embryos and seeds develop in the ovule without female meiosis and egg cell fertilization. Apomixis produces seed progeny that are exact replicas of the mother plant. The major advantage of apomixis over sexual reproduction is the possibility to select individuals with desirable gene combinations and to propagate them as clones. In contrast to clonal propagation through somatic embryogenesis or in vitro shoot multiplication, apomixis avoids the need for costly processes, such as the production of artificial seeds and tissue culture. It simplifies the processes of commercial hybrid and cultivar production and enables a large-scale seed production economically in both seed- and vegetatively propagated crops. In vegetatively reproduced plants (e.g., potato), the main applications of apomixis are the avoidance of phytosanitary threats and the spanning of unfavorable seasons. Because of its potential for crop improvement and global agricultural production, apomixis is now receiving increasing attention from both scientific and industrial sectors. Harnessing apomixis is a major goal in applied plant genetic engineering. In this regard, efforts are focused on genetic and breeding strategies in various plant species, combined with molecular methods to analyze apomictic and sexual modes of reproduction and to identify key regulatory genes and mechanisms underlying these processes. Also, investigations on the components of apomixis, i.e., apomeiosis, parthenogenesis, and endosperm development without fertilization, genetic screens for apomictic mutants and transgenic approaches to modify sexual reproduction by using various regulatory genes are receiving a major effort. These can open new avenues for the transfer of the apomixis trait to important crop species and will have far-reaching potentials in crop improvement regarding agricultural production and the quality of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asker S (1980) Gametophytic apomixis: elements and genetic regulation. Hereditas 93: 277–293

    Google Scholar 

  • —, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Baracaccia G, Albertini E, Mafferi N, Veronessi F (1998) Elements of apomixis in theMedicago sativa L. complex. In: XVth International Congress on Sexual Plant Reproduction, August 16–21, Wageningen, The Netherlands, p 63 (Abstr)

  • Bashaw EC (1980) Apomixis and its application in crop improvement. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, Wis, pp 45–63

    Google Scholar 

  • —, Hanna WW (1990) Apomictic reproduction. In: Chapman GP (ed) Reproductive versality in the grasses. Cambridge University Press, Cambridge, pp 100–130

    Google Scholar 

  • Carman JC (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61: 51–94

    Google Scholar 

  • - Wang RRC (1992) Apomixis in Triticeae. In: Proceedings Apomixis Workshop, Atlanta, Ga, pp 26–29

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES (1997) Fertilization-independent seed development inArabidopsis thaliana. Proc Natl Acad Sci USA 94: 4223–4228

    PubMed  Google Scholar 

  • Crane CF, Carman JC (1987) Mechanism of apomixis inElymus recticetus from Eastern Australia and New Zealand. Am J Bot 74: 477–496

    Google Scholar 

  • Do Valle CB, Savidan YH (1996) Genetics, cytogenetics and reproductive biology ofBrachiaria. In: Miles JW, Maass BL, do Valle CB (eds)Brachiaria: biology, agronomy, and improvement. Centro Internacional de Agricultura Tropical, Cali, Colombia, Empresa Brasileira de Pesquia Agropecuária, Centro Nacional de Pesquia de Gado de Corte, Campo Grande, Brazil, pp 147–163

    Google Scholar 

  • Dijk P van, Bakx-Schotman (1998) What makes a dandalion an apomict? In: XVth International Congress on Sexual Plant Reproduction, August 16–21, Wageningen, The Netherlands, p 72 (Abstr)

  • Dujardin M, Hanna WW (1989) Developing apomictic pearl millet: characterization of a BC3 plant. J Genet Breed 43: 145–151

    Google Scholar 

  • Gohil RN, Kaul R (1981) Studies on male and female meiosis in IndianAllium 2: autotetraploidAllium tuberosum. Chromosoma 82: 735–739

    Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, De Leon DG, Savidan Y (1998) Mapping diplosporous apomixis in tetraploidTripsacum: one gene or several genes? Heredity 80: 33–39

    PubMed  Google Scholar 

  • Grossniklaus U, Koltunow AM, van Lockeren Campagne MM (1998a) A bright future for apomixis. Trends Plant Sci 3: 415–416

    Google Scholar 

  • —, Ville-Calzada JP, Hoeppner MA, Gagliano WB (1998b) Maternal control of embryogensis byMEDEA, a polycomb group gene inArabidopsis. Science 280: 446–450

    PubMed  Google Scholar 

  • Håkansson A, Levan A (1957) Endoduplicational meiosis inAllium odorum. Hereditas 43: 179–200

    Google Scholar 

  • Hanna WW (1991) Apomixis in crop plants: cytogenetic basis and role in plant breeding. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants: genetics, breeding, evolution, part A. Elsevier, Amsterdam, pp 229–242

    Google Scholar 

  • — (1995) Use of apomixis in cultivar development. Adv Agron 54: 333–350

    Google Scholar 

  • —, Dujardin M, Ozias-Akins P, Lubbers P, Arthur L (1993) Production, cytology and fertility of pearl millet ×Pennisetum squamulatum BC4 plants. J Hered 84: 213–216

    Google Scholar 

  • Havekes FWJ, de Jong JH, Heyting C (1997) Comparative analysis of the female and male meiosis in three meiotic mutants of tomato. Genome 40: 879–886

    Google Scholar 

  • He C, Mascarenhas JP (1998) MEI1, anArabidopsis gene required for male meiosis: isolation and characterization. Sex Plant Reprod 11: 199–207

    Google Scholar 

  • —, Tirlapur U, Cresti M, Peja M, Crone DE, Mascarenhas JP (1996) AnArabidopsis mutant showing aberrations in male meiosis. Sex Plant Reprod 9: 54–57

    Google Scholar 

  • Hermsen JGT, Ramanna MS, Jongedijk E (1985) Apomictic approach to introduce uniformity and vigour into progenies from true potato seed (TPS). In: Planning Conference: present and future strategies for potato breeding and improvement, report 26. Centro Internacional de la Papa, Lima, Peru, pp 99–114

    Google Scholar 

  • Jefferson RA (1994) Apomixis: a social revolution for agriculture? Biotech Dev Monitor 19: 14–16

    Google Scholar 

  • —, Bicknell R (1996) The potential impacts of apomixis: a molecular genetic approach. In: Sobra BWS (ed) The impact of plant molecular genetics. Birkhäuser, Boston, pp 87–101

    Google Scholar 

  • Ji L-H, Langridge P (1994) An early meiosis cDNA clone from wheat. Mol Gen Genet 243: 17–23

    PubMed  Google Scholar 

  • Jongedijk E (1987) A rapid methyl salicylate clearing technique for routine phase contrast observations on female meiosis inSolanum. J Microsc 146: 157–162

    Google Scholar 

  • — (1986) The present state of research into the induction of apomixis in potato. In: Beekman AGB, Louwes KM, Dellaert LMW, Neele EF (eds) Potato research of tomorrow: proceedings of an international seminar. Pudoc, Wageningen, pp 120–123

    Google Scholar 

  • Jongedijk E, Ramanna MS (1988) Synaptic mutants in potato,Solanum tuberosum L. 1: expression and identity of genes for desynapsis. Genome 30: 664–670

    Google Scholar 

  • — —, Sawor Z, Hermsen JGT (1991) Formation of first division restitution (FDR) 2n gametes through pseudohomotypic division inds-1 from 2xFDR-2xFDR crosses. Theor Appl Genet 82: 645–656

    Google Scholar 

  • Khush GS, Brar DS, Bennett J, Virmani SS (1994) Apomixis in rice improvement. In: Proceedings of the Apomixis Workshop, Manila. International Rice Research Institute, Manila, Philippines, pp 1–22

    Google Scholar 

  • Kindiger B, Sokolov V, Dewald C (1996) A comparison of apomictic reproduction in eastern gamagrass (Tripsacum dactyloides L.) and maize-Tripsacum hybrids. Genetica 97: 103–110

    Google Scholar 

  • Klimyuk VI, Jones JDG (1997)AtDMC1, theArabidopsis homologue of the yeastDMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant J 11: 1–14

    PubMed  Google Scholar 

  • Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, Tanaka A, Tabata S (1994) Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res 1: 15–26

    PubMed  Google Scholar 

  • Kojima A, Nagato Y (1992) Diplosporous embryo sac formation and the degree of diplospory inAllium tuberosum. Sex Plant Reprod 5: 72–78

    Google Scholar 

  • — —, (1997) Discovery of highly apomictic and highly amphimictic dihaploids inAllium tuberosum. Sex Plant Reprod 10: 8–12

    Google Scholar 

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425–1437

    PubMed  Google Scholar 

  • —, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108: 1345–1352

    PubMed  Google Scholar 

  • —, Johnson SD, Bicknell RA (1998) Sexual and apomictic development inHieracium. Sex Plant Reprod 11: 213–230

    Google Scholar 

  • Koornneef M (1994)Arabidopsis genetics In: Meyerowitz EM, Somerville CR (eds)Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 89–120

    Google Scholar 

  • Liu ZW, Wang RRC, Carman JG (1994) Hybrids and backcross progenies between wheat (Triticumaestivum L.) and apomictic Australian wheatgrass [Elmusrecticetus (Nees in Lehm.) A. Love & Conner]: karyotypic and genomic analysis. Theor Appl Genet 89: 599–605

    Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development inArabidopsis thaliana. Proc Natl Acad Sci USA 96: 296–301

    PubMed  Google Scholar 

  • Maheshwari SC, Maheshwari N, Khurana JP, Sopory SK (1998) Engineering apomixis in crops: a challenge for plant molecular biologists in the next century. Curr Sci 75: 1141–1147

    Google Scholar 

  • McMeniman S, Lubulwa G (1997) Project development assessment: an economic evaluation of the potential benefits of integrating apomixis in hybrid rice. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Meinke DW, Cherry M, Dean C, Rounsley SD, Koornneef M (1998)Arabidopsis thaliana: a model plant for genome analysis. Science 282: 662–682

    PubMed  Google Scholar 

  • Mogie M (1988) A model for the evolution and control of generative apomixis. Biol J Linn Soc 35: 127–154

    Google Scholar 

  • — (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

    Google Scholar 

  • Morgan RN, Ozias-Akins P, Hanna WW (1998) Seed set in an apomictic BC3 pearl millet. Int J Plant Sci 159: 89–97

    Google Scholar 

  • Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M, Bechtold N, Pelletier G, Horlow C (1998)Switch (swil) anArabidopsis thaliana mutant affected in the female meiotic switch. In: XVth International Congress on Sexual Plant Reproduction, August 16–21, Wageningen, The Netherlands, p 81 (Abstr)

  • Naumova TN (1993) Apomixis in angiosperms: nucellar and integumentary embryony. CRC Press, Boca Raton

    Google Scholar 

  • —, Osadtchiy JV, Sharma VK, Dijkhuis P, Ramulu KS (1998) Apomixis in plants: structural and functional aspects of diplospory inPoa palustris andP. nemoralis. Protoplasma 208: 186–195

    Google Scholar 

  • Nijs APM den, Dijk GE van (1993) Apomixis. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapman and Hall, London, pp 229–245

    Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 475–518

    Google Scholar 

  • Nygren A (1967) Apomixis in the angiosperms. In: Linskens HF (ed) Sexualität, Fortpflanzung, Generationswechsel. Springer, Berlin Heidelberg New York, pp 555–596 (Ruhland W [ed] Handbuch der Pflanzenphysiologie, vol 18)

    Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93: 5319–5324

    PubMed  Google Scholar 

  • Ozias-Akins PE, Lubbers L, Hanna WW, McNay JW (1993) Transmission of the apomictic mode of reproduction inPennisetum: coinheritance of the trait and molecular markers. Theor Appl Genet 85: 632–638

    Google Scholar 

  • —, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers inPennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95: 5127–5132

    PubMed  Google Scholar 

  • Parlevliet JE, Cameron JW (1959) Evidence on the inheritance of nucellar embryony inCitrus. Proc Am Soc Hortic Sci 74: 252–260

    Google Scholar 

  • Peacock WJ, Ming L, Craig S, Dennis E, Chaudhury AM (1995) A mutagenesis programme for apomixis genes inArabidopsis. In: Proceedings of the symposium on induced mutations and molecular techniques for crop improvement. International Atomic Energy Agency, Vienna, pp 117–125

    Google Scholar 

  • Pierson BN, Owen HA, Feldman KA, Makaroff CA (1996) Characterization of three male-sterile mutants ofArabidopsis thaliana exhibiting alterations in meiosis. Sex Plant Reprod 9: 1–16

    Google Scholar 

  • Ramanna MS (1979) A re-examination of the mechanisms of 2n gamete formation in potato and its implications for breeding. Euphytica 28: 537–561

    Google Scholar 

  • Ramulu KS, Dijkhuis P, Pereira A, Angenent GC, van Lookeren Campagne MM, Dons H (1998) EMS and transposon mutagenesis for the isolation of apomictic mutants in plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutation in crop improvement. Kluwer, Dordrecht, pp 379–401 (Current plant science and biotechnology in agriculture, vol 19)

    Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ, Vizir B, Mulligan B, Franklin FCH, Jones GH (1997) Cytological characterization of four meiotic mutants ofArabidopsis isolated from T-DNA-transformed lines. Chromosome Res 3: 331–339

    Google Scholar 

  • Savidan Y (1980) Chromosomal and embryological analysis in sexual × apomictic hybrids ofPanicum maximum Jacq. Theor Appl Genet 57: 153–156

    Google Scholar 

  • — (1981) Genetics and utilization of apomixis for the improvement of guinea grass (Panicum maximum Jacq.). In: Proceedings of the 14th International Grassland Congress, Lexington, Kentucky, pp 182–184

    Google Scholar 

  • —, Leblanc O, Berthaud J (1993) Progress in the transfer of apomixis in maize. Agronomy Abstracts, Madison, Wis

    Google Scholar 

  • —, Grimanelli D, Leblanc O (1995) Apomixis expression in maize-Tripsacum hybrid derivatives and the implications regarding its control and potential for manipulation. Apomixis News 8: 35–37

    Google Scholar 

  • Sybenga J (1975) Meiotic configurations. Springer, Berlin Heidelberg New York (Monographs on theoretical and applied genetics, vol 1)

    Google Scholar 

  • — (1992) Cytogenetics in plant breeding. Springer, Berlin Heidelberg New York Tokyo (Monographs on theoretical and applied genetics, vol 17)

    Google Scholar 

  • Veille Calzada JP, Crane CF, Stelly DM (1996) Apomixis: the asexual revolution. Science 274: 1322–1323

    Google Scholar 

  • Virmani SS, Aquino RC, Khush GS (1982) Heterosis breeding in rice. Theor Appl Genet 63: 373–380

    Google Scholar 

  • Wagenvoort M, de Bock TSM, Naumova TN (1995) Callose deposition in sexual and aposporous biotypes of the tropical foragesBrachiaria andPaspalum. In: International conference on harnessing apomixis: a new frontier in plant science, Texas, p 45 (Abstr)

  • Willemse MTM, Naumova TN (1992) Apomictic genes and seed plant reproduction. Apomixis Newsl 5: 19–32

    Google Scholar 

  • Yamamoto M (1996) The molecular control machanisms of meiosis in fission yeast. Trends Biol Sci 21: 18–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramulu, K.S., Sharma, V.K., Naumova, T.N. et al. Apomixis for crop improvement. Protoplasma 208, 196–205 (1999). https://doi.org/10.1007/BF01279090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279090

Keywords

Navigation