Skip to main content
Log in

Über die Wirkung von ADP und einigen Kationen auf die Rotationsströmung in den Wurzelhaaren der Gerste (Hordeum vulgare L.)

The effect of ADP and some cations on rotational streaming in barley (Hordeum vulgare L.) root hairs

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The effect of ADP, Ca++, Mg++, K+, and Cu++ upon rotational streaming within barley (Hordeum vulgäre L.) root hairs was separately studied. It was shown that various solutions of ADP may stimulate the streaming after continuous treatment. The rate increase of the rotational streaming was inverse proportional to ADP concentration (Fig. 3).

From the investigated cations only Ca++ (1·10−3M) caused a stimulation of streaming after continuous treatment. This effect is probably due to enzymic activation of a contractile proteine which has ATPase feature.

The role of ADP and of the investigated cations in the stimulation of the rotational streaming was studied by means of mixed treatment. This kind of treatment consists in a simultaneous administration of ADP (1 · 10−6M) and CaCl2, MgCl2, KCl (1 · 10−3M), or CuCl2 (1 · 10−6M) solutions. Ca++ and Mg++ showed an antagonistic action. Ca++ brings about an immediately suppress of ADP induced stimulation. Suddenly the rate of streaming comes back to control. Mg++ after a temporary maintaining of stimulation, also causes the lowering of the streaming. The action of K+ was very similar to those of Ca++. Cu++ changes to a little extent the stimulation caused by ADP.

The simultaneous action of ADP and of the investigated cations allow us to express the following hypothesis. The stimulation of the rotational streaming after ADP treatment probably is due to ATP synthetized in mitochondria on the account of ADP. The additional synthesis of ATP can be prevented by simultaneous administration of Ca++. According toHanson and his coworkers Ca++ would compete with ADP for a phosphorylated intermediate product. From a such competition would result the Ca++ and Pi accumulation. The active uptake of salts which require energy would also explain the lowering of the rotational streaming rate after the mixed treatment.

Zusammenfassung

In getrennten Versuchen wurde die Wirkung von ADP, Ca++, Mg++, K+ und Cu++ auf die Rotationsströmung in den Wurzelhaaren der Gerste (Hordetim vulgare L.) untersucht. Das in verschiedenen Konzentrationen fortdauernd verabreichte ADP bedingte eine Stimulation der Plasmaströmung. Die Beschleunigung der Rotationsströmung war der ADP-Konzentration gegenüber umgekehrt proportional (Abb. 3).

Von den untersuchten Kationen hatte nur Ca++ (1·10−3 Mol) eine Stimulationswirkung. Diese Stimulationswirkung wird der Aktivierung eines Enzyms bzw. eines kontraktilen Proteins mit ATPase-Eigenschaften zugeschrieben.

Die Rolle von ADP und einigen Kationen bei der Stimulation der Rotation wurde dann mit Hilfe einer gemischten Behandlung untersucht. Diese bestand in der gleichzeitigen Verabreichung von ADP (1·10−6 Mol) und CaCl2, MgCl2, KCl (1 · 10−3 Mol) oder CuCl2 (1·10−6 Mol). Es wurde festgestellt, daß Mg++ und Ca++ eine antagonistische Wirkung ausüben. Ca++ hebt die durch ADP induzierte Stimulation auf und reduziert die Rotationsgeschwindigkeit plötzlich bis auf den Kontrollwert. Die Mg++-Wirkung bewirkt, nach einer zeitweiligen Beibehaltung der Stimulation, ebenfalls eine Abnahme der Geschwindigkeit. K+ hat eine ähnliche Wirkung wie Ca++. Cu++ beeinträchtigt die ADP-induzierte Stimulation in geringem Maße.

Die gleichzeitige Einwirkung von ADP und einigen Kationen erlaubt die Aufstellung folgender Hypothese. Die Rotationsstimulation erfolgt dank dem ATP, das auf Kosten des von außen absorbierten ADP in den Mitochondrien synthetisiert wird. Die zusätzliche ATP-Synthese kann durch gleichzeitige Ca++-Behandlung unterbunden werden. NachHanson und Mitarb, sollen Ca++ und ADP um ein phosphoryliertes Zwischenprodukt in Kompetition treten, so daß es zu einer Ansammlung von Ca++ und Pa in der Zelle kommt. Andererseits könnte teilweise auch die aktive, energieverbrauchende Salzabsorption die Geschwindigkeitsabnahme der Rotation bei gemischter Behandlung erklären.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Banga, I., 1942: The phosphatase activity of myosin. Studies Inst. Med. Chem. Univ. Szeged1, 27–35.

    Google Scholar 

  • Brierley, G. P., E. Bachmann, andD. E. Green, 1962: Active transport of inorganic phosphate and Mg++ by beef mitochondria. Proc. nat. Acad. Sci. (U.S.)48, 1928.

    Google Scholar 

  • —,E. Murer, andD. E. Green, 1963: Participation of an intermediate of oxidative phosphorylation in ion accumulation by mitochondria. Science140, 60–62.

    PubMed  Google Scholar 

  • Brueske, C. H., andG. H. Applegate, 1966: The roles of adenosine-triphosphat and glutathione in the inhibition of cyclosis by p-chlorobenzoic acid inElodea densa. New Phytologist65, 44–49.

    Google Scholar 

  • Colla, S., 1929: Untersuchungen über Plasma und Plasmaströmung bei Characeen. II. Die Wirkung verschiedener Salze auf die Protoplasmaströmung. Protoplasma6, 438–448.

    Google Scholar 

  • Dixon, M., andE. C. Webb, 1964: Enzymes. London: Longmans & Co.

    Google Scholar 

  • Gimesi, N. I., andB. J. Pozsar, 1955: About the physiology of protoplasmic movements. Acta biol. Acad. Sci. hung.6, 113–132.

    Google Scholar 

  • Hanson, J. B., S. S. Malhorta, andC. D. Stoner, 1965: Action of calcium on corn mitochondria. Plant Physiol.40, 1033–1040.

    Google Scholar 

  • Hodges, T. K., andJ. B. Hanson, 1965: Calcium accumulation by maize mitochondria. Plant Physiol.40, 101–109.

    Google Scholar 

  • Kamiya, N., 1959: Protoplasmic streaming. Protoplasmatologia. Handb. der Protoplasmaforschung8 (3 a). Wien: Springer Verlag.

    Google Scholar 

  • —, 1962: Protoplasmic streaming. In:W. Ruhlands Encyclopedia of plant physiology. Vol.XVII, part 2, p. 979–1035. Berlin-Göttingen-Heidelberg: Springer Verlag.

    Google Scholar 

  • —,H. Nakajima, andS. Abe, 1957: Physiology of the motive force of protoplasmic streaming. Protoplasma48, 94–112.

    Google Scholar 

  • Kenefick, D. G., andJ. B. Hanson, 1967: Active accumulation of phosphate by maize mitochondria. Isotopes in plant nutrition and physiology. Internat. Atomic Energy Agency, Vienna, 271–287.

    Google Scholar 

  • Kuroda, K., 1958: Sur le courant protoplasmique dans le fragment de protoplasm d'un Myxomycète. C. R. Soc. Biol. (Paris)152, 392–394.

    Google Scholar 

  • Lehninger, A. L., 1964: The Mitochondrion. Molecular basis of structure and function. New York-Amsterdam: W. A. Benjamin Inc.

    Google Scholar 

  • Lineweaver, H., andD. Burk, 1934: The determination of enzyme dissociation constants. J. Amer. chem. Soc.56, 658–666.

    Google Scholar 

  • Loewy, A. G., 1952: An actomyosin-like substance from the plasmodium of a myxomycete. J. cell. comp. Physiol.40, 413–436.

    Google Scholar 

  • Lundegårdh, H., 1951: Spectroscopic evidence of the participation of the cytochrome-cytochrome oxidase system in the active transport of salts. Ark. f. Kemi (Stockholm)3, 69–79.

    Google Scholar 

  • Nakajima, H., 1960: Some properties of a contractile protein in a myxomycete plasmodium. Protoplasma52, 413–436.

    Google Scholar 

  • —, 1964: The mechanochemical system behind streaming inPhysarum. In:Allen, R. D., andN. Kamiya, Primitive motile systems in cell biology 111–123. New York and London: Academic Press.

    Google Scholar 

  • Needham, D. M., 1960: Biochemistry of muscular contraction. In:G. H. Bourne, The structure and function of muscle. Vol. II, 55–104. New York-London: Academic Press.

    Google Scholar 

  • Ohta, J., 1958: Experimental studies on the protoplasmic streaming in the myxomycete plasmodium. III. The effects of amino acids and some chelating substances on the motive force of protoplasmic streaming. Cytologia23, 232–238.

    Google Scholar 

  • Perry, S. V., 1952: Biochem. Biophys. Acta8, 499 (zitiert nachDixon M. and E. C.Webb, 1964, Enzymes. London: Longmans & Co.).

    PubMed  Google Scholar 

  • Poglazov, B. F., 1966: Structure and functions of contractile proteins. New York-London: Academic Press.

    Google Scholar 

  • Pop, E., V. Soran, andG. Lazăr, 1967: The effect of ATP (disodium salt) upon rotational streaming. Physiol. plantarum20, 617–623.

    Google Scholar 

  • Rossi, C. S., andA. L. Lehninger, 1964: Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. Biol. Chem.239, 3971–3880.

    PubMed  Google Scholar 

  • Sandon, T., andT. Somura, 1995: Effect of ATP on the rate of protoplasmic streaming inNitella. Bot. Mag. (Tokyo)72, 337–341.

    Google Scholar 

  • Sato, T., 1959: Effect of cations on the protoplasmic streaming inAcetabularia calyculus. Kanasai Meeting, Bot. Soc. Japan Osaka (zitiert nach N.Kamiya, 1962).

    Google Scholar 

  • Soran, V., andG. Lazăr, 1969: The relationship between myo-inositol, ATP and rotational streaming. Physiol. plantarum22, 560–569.

    Google Scholar 

  • Stoner, C. D., andJ. B. Hanson, 1966: Swelling and contraction of corn mitochondria. Plant Physiol.41, 255–266.

    Google Scholar 

  • Strugger, S., 1949: Praktikum der Zell- und Gewebephysiologie der Pflanzen. 2. Auflage. Berlin-Göttingen-Heidelberg: Springer Verlag.

    Google Scholar 

  • Sutcliffe, J. F., andD. P. Hackett, 1957: The efficiency of ion transport in biological systems. Nature180, 95–96.

    PubMed  Google Scholar 

  • Sweeney, B. M., andK. V. Thimann, 1942: The effect of auxins on protoplasmic streaming. III. J. Gen. Physiol.25, 841–854.

    Google Scholar 

  • Tairbekov, M. G., E. N. Kazantzev, andS. V. Tageeva, 1965: Synthesis and decomposition of ATP as function of cytoplasm motion in plant cell. Biochimija (Moskva)30, 1007–1012 (in Russian).

    Google Scholar 

  • Takata, M., 1957: Physiological studies on the protoplasmic streaming in plasmodia by means of microdissection. 22nd Ann. Meet. Bot. Soc. Japan.

  • —, 1958: Protoplasmic streaming inAcetabularia calyculus. Kagku (Science)28, 142 (in Japanese).

    Google Scholar 

  • Takeuchi, J., and S.Hatano, 1955: Energy-rich phosphate compounds in the slime mould and their levels in relation to some external condition. 20th Ann. Meet. Bot. Soc. Japan.

  • - - 1956: Acid soluble energy rich phosphate compounds in the slime mould. II. 21th Ann. Meet. Bot. Soc. Japan.

  • Ts'o, P. O. P., J. Bonner, L. Eggman, andJ. Vinograd, 1956: Observations on an ATP-sensitive protein system from the plasmodia of myxomycete. J. Gen. Physiol.39, 325–347.

    PubMed  Google Scholar 

  • —,L. Eggman, andJ. Vinograd, 1956: The isolation of myxomyosin, an ATP-sensitive protein from the plasmodium of a myxomycete. J. Gen. Physiol.39, 801–812.

    PubMed  Google Scholar 

  • — — —, 1957: The interaction of myosin with ATP. Arch. Biochem. Biophys.66, 64–70.

    PubMed  Google Scholar 

  • Vintila, R., 1969: The effect of phosphorylated glucose on the rotational streaming in the root hairs of barley (Hordeum vulgare). Rev. Roum. Biol. Ser. bot. (Bucharest)14, 235–239.

    Google Scholar 

  • Vorobeva, I. A., andB. F. Poglazov, 1963: Isolation of a contractile protein from algaNitella flexilis. Biofizika (Moskva)8, 427–429 (in Russian).

    Google Scholar 

  • —, andL. N. Vorobev, 1965: Adenosintriphosphate effect on resting potential and the movement ofNitella mucronata protoplasm. Biofizika (Moskva)10, 1007–1012 (in Russian).

    Google Scholar 

  • Weber, E., 1964: Grundriß der biologischen Statistik. 5. Auflage. Jena: VEB Gustav Fischer Verlag.

    Google Scholar 

  • Weigl, J., 1963: Die Bedeutung der energiereichen Phosphate bei der Ionenaufnahme durch Wurzeln. Planta (Berl.)60, 307–321.

    Google Scholar 

  • —, 1967: Beweis für die Beteiligung von beweglichen Transportstrukturen (Trägern) beim Ionentransport durch pflanzliche Membranen und die Kinetik des Anionentransportes beiElodea im Licht und im Dunkeln. Planta (Berl.)75, 327–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazăr-Keul, G., Soran, V. & Keul, M. Über die Wirkung von ADP und einigen Kationen auf die Rotationsströmung in den Wurzelhaaren der Gerste (Hordeum vulgare L.). Protoplasma 69, 37–48 (1970). https://doi.org/10.1007/BF01276650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276650

Navigation