Skip to main content
Log in

The Accumulation of Cu, Co, and Mg Ions and Its Effect on the Growth of Darlingtonia californica Torr. In Vitro

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The response of Darlingtonia californica Torr. on the effect of Cu, Co, and Mg ions in vitro is studied. The following concentrations of mineral salts are tested: 0.1 (control), 10, 25, 50, 75, and 100 μM CuSO4·5H2O (which corresponds to 0.006, 0.6, 1.6, 3.2, 4.8, and 6.4 mg/L of water-soluble Cu ions); 0.1 (control), 10, 25, 50, 75, and 100 μM CoCl2·6H2O (corresponding to 0.006, 0.6, 1.5, 3.0, 4.4, and 5.9 mg/L of water-soluble Co ions); and 1500 (control), 4500, 7500, 10500, and 15 000 μM MgSO4·7H2O (corresponding to 36, 108, 181, 253, and 362 mg/L of water-soluble Mg ions). The results show a direct significant correlation between the accumulation of Cu, Co, and Mg ions in D. californica plants depending on their content in nutrient solutions. The maximum accumulation of ions is found after 45 days of cultivation, Cu—138.24 mg/kg of dry matter, Co—249.92 mg/kg, and Mg—4722.26 mg/kg. It is shown that the concentrations used do not significantly affect the parameters of plant growth and development in vitro. Morphological and anatomical studies confirm the high level of ecological adaptation of this species to extreme conditions. In addition, the plants do not require specific cultural conditions; they are able to grow on nutrient media rich in mineral composition at a temperature of 24 ± 1°C and do not require low positive temperatures for the root system. The results show that D. californica plants are able to accumulate Cu, Co, and Mg ions and tolerate high concentrations of these elements in nutrient media in vitro, but they are not characterized by an increased need for these elements for normal growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Adlassnig, W., Peroutka, M., Lambers, H., and Lichtscheidl, I.K., The roots of carnivorous plants, Plant Soil, 2005, vol. 274, pp. 127–140. https://doi.org/10.1007/s11104-004-2754-2M

    Article  CAS  Google Scholar 

  2. Alekseenko, V.A., The main factors of accumulation of chemical elements by organisms, Soros Educ. J., 2001, vol. 7, no. 8, pp. 20‒24.

    Google Scholar 

  3. Baker, A.J.M., Accumulators and excluders-strategies in the response of plants to heavy metals, J. Plant Nutr., 1981, vol. 3, nos. 1–4, pp. 643‒654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  4. Baker, A.J.M. and Brooks, R.R., Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry, Biorecovery, 1989, vol. 1, pp. 81–126.

    CAS  Google Scholar 

  5. Cacho, N.I., Burrell, A.M., Pepper, A.E., and Strauss, Sh.Y., Novel nuclear markers inform the systematics and the evolution of serpentine use in Streptanthus and allies (Thelypodieae, Brassicaceae), Mol. Phylogenet. Evol., 2014, vol. 72, pp. 71‒81. https://doi.org/10.1016/j.ympev.2013.11.018

    Article  CAS  Google Scholar 

  6. Caldeira, M.M.M., Jesus, J.V.M., Magalhães, H.S., Carvalho, M.A.S., Andrade, M.S., and Nunes, C.F., Tissue culture applied to carnivorous species, Sci. Agrar. Paranaensis, 2021, vol. 19, no. 4, pp. 312–320. https://doi.org/10.18188/sap.v19i4.22193

    Article  Google Scholar 

  7. Chipeng, F.K., Hermans, C., Colinet, G., Faucon, M.P., Ngongo, M., Meerts, P., and Verbruggen, N., Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke, Plant Soil, 2010, vol. 328, pp. 235–244. https://doi.org/10.1007/s11104-009-0105-z

    Article  CAS  Google Scholar 

  8. Clarke, C.A., Guide to the Pitcher Plants of Sabah. Natural History Publications, Kota Kinabalu, 2001.

    Google Scholar 

  9. Darnowski, D.W., Triggerplants, Rosenberg Publ., 2002.

    Google Scholar 

  10. Dixit, V., Pandey, V., and Shyam, R., Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria, Plant, Cell Environ., 2002, vol. 25, no. 5, pp. 687‒690.

    Article  CAS  Google Scholar 

  11. Ernst, W.H.O., Evolution of metal hyperaccumulation and phytoremediation hype, New Phytol., 2000, vol. 146, no. 3, pp. 357–358.

    Article  Google Scholar 

  12. Erst, A.A., Zheleznichenko, T.V., Novikova, T.I., Dorogina, O.V., and Banaev, E.V., Ecological and geographic variability of Hedysarum theinum and features of its propagation in vitro, Contemp. Probl. Ecol., 2014, vol. 7, pp. 67–71. https://doi.org/10.1134/S1995425514010053

    Article  Google Scholar 

  13. Erst, A.A., Zvyagina, N.S., Novikova, T.I., and Dorogina, O.V., Clonal micropropagation of rare species of Hedysarum theinum Krasnob. (Fabaceae) and assessment of genetic stability of regenerated plants with ISSR-markers, Russ. J. Genet., 2015, vol. 51, no. 2, pp. 158‒162. https://doi.org/10.1134/S1022795415020076

    Article  CAS  Google Scholar 

  14. Fatima, N., Ahmad, N., and Anis, M., Enhanced in vitro regeneration and change in photosynthetic pigments, biomass and proline content in Withania somnifera L. (Dunal) induced by copper and zinc ions, Plant Physiol. Biochem., 2011, vol. 49, no. 12, pp. 1465‒1471. https://doi.org/10.1016/j.plaphy.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  15. Fraustadt, A., Anatomie der vegetativen organe von Dionaea muscipula Ell., Cohns Beitr. Biol. Pflanz., 1877, vol. 2, pp. 27–64.

    Google Scholar 

  16. Freidenfelt, T., Der anatomische Bau der Wurzeln in seinem Zusammenhang mit dem Wassergehalt des Bodens (Studien uber die Wurzeln der krautigen Pflanzen II.), Bibl. Bot., 1904, vol. 61, pp. 1–118.

    Google Scholar 

  17. George, E.F., Hall, M.A., and Klerk, G.J.D., The components of plant tissue culture media I: macro- and micro-nutrients, in Plant Propagation by Tissue Culture, George, E.F., Hall, M.A., Klerk, G.J.D., Eds., Dordrecht: Springer-Verlag, 2008, pp. 65‒113. https://doi.org/10.1007/978-1-4020-5005-3_3

  18. Gibson, T.C., On the cultivation of the giant Malaysian pitcher plant (Nepenthes rajah), Carniv. Plant Newslett., 1983, vol. 12, pp. 82–84.

    Google Scholar 

  19. Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2015, vol. 1.

  20. Greger, M., Metal availiability and bioconcentration in plants, in Heavy Metal Stress in Plants. From Molecules to Ecosystems, Prasad, M.N.V. and Hagemeyer, J., Eds., Berlin: Springer-Verlag, 1999.

    Google Scholar 

  21. Guttenberg, H., Der primare Bau der Angiospermenwurzel, Berlin: Gebrüder Borntraeger, 1968.

    Google Scholar 

  22. Ilyin, V.B. and Syso, A.I., Trace elements and heavy metals in soils and plants of the Novosibirsk region, Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.

    Google Scholar 

  23. Ilyin, V.B. and Yudanova, L.A., Heavy metals in soils and plants, Povedeniye rtuti I drugikh tyazhelykh metallov v ekosistemakh. Chast’ II. Protsessy bioakkumulyatsii I ekotoksikologiya. (Behavior of Mercury and Other Heavy Metals in Ecosystems. Part II. Bioaccumulation Processes and Ecotoxicology), Novosibirsk, 1989, pp. 6–47.

  24. Ivanova, E.M., The toxic effect of copper and the mechanisms of its detoxification by rapeseed plants, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2011.

  25. Jain, R., Srivastava, S., Madan, V.K., and Jain, R., Influence of chromium on growth and cell division of sugarcane, Indian J. Plant Physiol., 2000, vol. 5, pp. 228–231.

    CAS  Google Scholar 

  26. Jain, P., Kachhwaha, S., and Kothari, S.L., Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium, Sci. Horticult., 2009, vol. 119, no. 3, pp. 315‒319. https://doi.org/10.1016/j.scienta.2008.08.015

    Article  CAS  Google Scholar 

  27. Juniper, B.E., Robins, R.J., and Joel, D.M., The Carnivorous Plants, London: Acad. Press, 1989. Kabata-Pendias, A., Trace Elements in Soils and Plants, London: Taylor & Francis Group, 2011.

  28. Kabata-Pendias, A., Trace Elements in Soils and Plants, London: Taylor & Francis Group, 2011.

  29. Karataglis, S., Babalonas, D., and Kabasakalis, B., The ecology of plant populations growing on serpentine soils. II Ca/Mg ratio and the Cr, Fe, Ni, Co concentrations as development factors of Buxus sempervirens L., Phyton, 1982, vol. 22, pp. 317‒327.

    CAS  Google Scholar 

  30. Kaul, R.B., Floral and fruit morphology of Nepenthes lowii and N. villosa, montane carnivores of Borneo, Am. J. Bot., 1982, vol. 69, no. 5, pp. 793–803.

    Article  Google Scholar 

  31. Kim, J.K., Kim, Y.J., Shin, S.N., and Lee, Ch.H., Effect of media components on in vitro propagation of Darlingtonia californica, Proc. Plant Resour. Soc. Korea, 2005, pp. 70–71.

    Google Scholar 

  32. Kothari, S.L., Agarwal, K., and Kumar, S., Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet‒Eleusine coracana (L.) Gaertn, In Vitro Cell. Dev. Biol.‒Plant., 2004, vol. 40, pp. 515–519. https://doi.org/10.1079/IVP2004564

    Article  CAS  Google Scholar 

  33. Kruckeberg, A.R., Introduction to California Soils and Plants: Serpentine, Vernal Pools, and Other Geobotanical Wonders, Berkeley: Univ. California Press, 2006, vol. 86.

    Google Scholar 

  34. Meharg, A.A., Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications, in Lambers, H. and Colmer, T.D., Eds., Root Physiology: from Gene to Function. Plant Ecophysiology, Dordrecht: Springer-Verlag, 2005, vol. 4, pp. 163‒174. https://doi.org/10.1007/1-4020-4099-7_8

  35. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio-assays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, no. 3, pp. 473‒497.

    Article  CAS  Google Scholar 

  36. Muszyńska, E. and Labudda, M., Dual role of metallic trace elements in stress biology—from negative to beneficial impact on plants, Int. J. Mol. Sci., 2019, vol. 20, no. 13, art. ID 3117. https://doi.org/10.3390/ijms20133117

    Article  CAS  PubMed Central  Google Scholar 

  37. Oels, W., Vergleichende Anatomie der Droseraceen, London: Liegnitz, 1879.

    Google Scholar 

  38. Oven, M., Grill, E., Golan-Goldhirsh, A., Kutchan, T.M., and Zenk, M.H., Increase of free cysteine and citric acid in plant cells exposed to cobalt ions, Phytochemistry, 2002, vol. 60, no. 5, pp. 467‒474. https://doi.org/10.1016/S0031-9422(02)00135-8

    Article  CAS  PubMed  Google Scholar 

  39. Oze, Ch., Skinner, C., Schroth, A.W., and Coleman, R.G., Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California, Appl. Geochem., 2008, vol. 23, pp. 3391–3403.

    Article  CAS  Google Scholar 

  40. Perelman, A.I., Geokhimiya (Geochemistry), Moscow: Vysshaya Shkola, 1989.

    Google Scholar 

  41. Rajakaruna, N. and Boyd, R.S., Serpentine Soil. Oxford Bibliographies in Ecology, 2014. https://doi.org/10.1093/OBO/9780199830060-0055

  42. Rengel, Z., Bose, J., Chen, Q., and Tripathi, B.N., Magnesium alleviates plant toxicity of aluminium and heavy metals, Crop Pasture Sci., 2015, vol. 66, pp. 1298–1307. https://doi.org/10.1071/CP15284

    Article  CAS  Google Scholar 

  43. Romankevich, E.A., Living matter of the Earth (biogeochemical aspects of the problem), Geokhimiya, 1988, no. 2, pp. 292‒306.

  44. Samantaray, S., Rout, G.R., and Das, P., Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L.) in vitro, J. Plant Physiol., 2001, vol. 158, pp. 1281‒1290.

    Article  CAS  Google Scholar 

  45. Sapper, I., Versuche zur hitzeresistenz der pflanzen, Planta, 1935, vol. 23, pp. 518–556.

    Article  Google Scholar 

  46. Shahid, A., Ahmad, N., Anis, M., Alatar, A.A., and Faisal, M., Morphogenic responses of Rauvolfia tetraphylla L. cultures to Cu, Zn and Cd ions, Rendiconti Lincei, 2016, vol. 27, pp. 369–374.

    Article  Google Scholar 

  47. Shanker, A.K., Cervantes, C., Loza-Tavera, H., and Avudainayagam, S., Chromium toxicity in plants, Environ. Int., 2005, vol. 31, no. 5, pp. 739‒753. https://doi.org/10.1016/j.envint.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  48. Slack, A., Carnivorous Plants, Yeovil: MIT-Press, 2000.

  49. Smith, C.M., Development of Dionaea muscipula. II Germination and seed and development of seedling to maturity, Bot. Gaz., 1931, vol. 91, no. 4, pp. 377‒394.

    Article  Google Scholar 

  50. Syso A. I. Heavy metals in the environment as a threat to plants, animals and humans, Materialy Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem “Agrokhimiya v XXI veke” (Proc. All-Russ. Sci. Conf. Int. Part. “Agrochemistry in the XXI century”), 2018, pp. 30‒33.

  51. Syso A. I., Siromlya T. I. Chemical elements and their compounds in soils and plants of native and anthropogenic ecosystems of Siberia, Materialy III Mezhdunarodnoi shkoly-seminara molodykh issledovatelei “Biogeokhimiya khimicheskikh elementov i soedinenii v prirodnykh sredakh” (Proc. III International School-Seminar for Young Researchers “Biogeochemistry of chemical elements and compounds in natural environments”), 2018, pp. 137‒150.

  52. Syso, A.I., Kolpashchikov, L.A., Ermolov, Y.V., Cherevko, A.S., and Siromlya, T.I., Elemental chemical composition of soils and plants in Western Taimyr, Contemp. Probl. Ecol., 2014, vol. 7, pp. 636–642. https://doi.org/10.1134/S1995425514060146

  53. Teplina, A.Yu., Paukov, A.G., and Morozova, M.V., Accumulation of Ni by representatives of the Brassicaceae family on soils of ultramafic rocks of the Southern and Middle Urals, Uch. Zap. Petrozavodsk. Gos. Univ., 2016, vol. 4, no. 157, pp. 110‒117.

    Google Scholar 

  54. Vanselow, A.P., Cobalt, in Diagnostic Criteria of Plants, Quality Printing Company, Chapman, H.D., Ed., Abilene, 1965, pp. 142‒156.

    Google Scholar 

  55. Viehweger, K., How plants cope with heavy metals, Bot. Stud., 2014, vol. 55, art. ID 35. https://doi.org/10.1186/1999-3110-55-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ziemer, R.R., Some field observations of Darlingtonia and Pinguicula, Carniv. Plant Newslett., 1973, vol. 2, pp. 25–27.

    Google Scholar 

Download references

Funding

This work was carried out as part of State Task Registration nos. 121031700309-1 ISSA SB RAS, AAAA-A21-121011290027-6, and AAAA-A21-121011290025-2 CSBG SB RAS. Materials from the bioresource scientific collection of the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences “Collections of Living Plants in Open and Protected Ground” USU 440534 were used for preparing the publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Erst, M. A. Lebedeva, A. I. Syso or E. V. Banaev.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erst, A.A., Lebedeva, M.A., Syso, A.I. et al. The Accumulation of Cu, Co, and Mg Ions and Its Effect on the Growth of Darlingtonia californica Torr. In Vitro. Contemp. Probl. Ecol. 15, 528–540 (2022). https://doi.org/10.1134/S1995425522050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522050055

Keywords:

Navigation