Skip to main content
Log in

X-ray microanalysis of antimonate precipitates in barley roots

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Barley roots fixed with OsO4 containing potassium pyroantimonate showed the presence of several types of electron opaque precipitates in the cells. Thin sections were cut from a region about 1 cm from the root tip and the electron opaque deposits analysed using EMMA-4 with KEVEX Si(Li) energy dispersive analyser. Antimony-containing deposits at the root surface associated with the mucilaginous sheath were found to contain Fe and P, and count ratios suggest constant proportions of these elements in the precipitates. Within the root cells, vacuolar deposits generally contained Os and Sb, but occasional deposits in epidermal cell vacuoles contained some Fe. Fe was also detected in nuclear deposits in endodermal cells.

These findings are discussed briefly in relation to the uptake of Fe into plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolle-Jones, E. W., 1955: The interrelationships of iron and potassium in potato plant. Plant and Soil6, 129–173.

    Google Scholar 

  • Bulger, R. E., 1969: Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J. Cell Biol.40, 79–94.

    Google Scholar 

  • Chaney, R. L., J. C. Brown, andL. O. Tiffin, 1972: Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol.50, 208–213.

    Google Scholar 

  • Clark, M. A., andG. A. Ackerman, 1971 a: Alteration of nuclear and nucleolar pyroantimonate-osmium reactivity by glutaraldehyde fixation. J. Histochem. Cytochem.19, 388–390.

    Google Scholar 

  • — —, 1971 b: A histochemical evaluation of the pyroantimonate-osmium reaction. J. Histochem. Cytochem.19, 727–737.

    Google Scholar 

  • Clarkson, D. T., 1974: Ion transport and cell structure in plants. London: McGraw-Hill.

    Google Scholar 

  • Garfield, R. E., R. M. Henderson, andE. E. Daniel, 1972: Evaluation of the pyroantimonate technique for localization of tissue sodium. Tissue and Cell4, 575–589.

    Google Scholar 

  • Hall, T. A., 1971: The microprobe assay of chemical elements. In: Physical techniques in biological research, 2nd ed., Vol. I A, Optical techniques (ed. by G.Oster), pp. 157–275.

  • Hartmann, J. F., 1966: High sodium content of cortical astrocytes. Electron microscope evidence. Arch. Neurol.15, 633–641.

    Google Scholar 

  • Hoagland, D. R., and D. I.Arnon, 1950: The water culture method for growing plants without soil. Calif. Agr. Exp. Stn. Circ. 347.

  • Jenny, H., 1961: Two phase studies on availability of iron in calcareous soils. V. Kinetics of iron transfer as conditioned by ion exchange capacity and structure of roots. Agrochimica5, 281–289.

    Google Scholar 

  • Kaye, G. I., J. D. Cole, andA. Donn, 1965: Electron microscopy: sodium localization in normal and ouabain-treated transporting cells. Science150, 1167–1168.

    Google Scholar 

  • Kierszenbaum, A. L., C. M. Libanati, andC. J. Tandler, 1971: The distribution of inorganic cations in mouse testis. Electron microscopy and microprobe analysis. J. Cell Biol.48, 314–323.

    Google Scholar 

  • Klein, R. L., C. R. Horton, andA. Thureson-Klein, 1970: Studies on nuclear amino acid transport and cation content in embryonic myocardium of the chick. Amer. J. Cardiol.25, 300–310.

    Google Scholar 

  • —,S. S. Yen, andA. Thureson-Klein, 1972: Critique on the K-pyroantimonate method for semiquantitative estimates of cations in conjunction with electron microscopy. J. Histochem. Cytochem.20, 65–78.

    Google Scholar 

  • Komnick, H., 1962: Elektronenmikroskopische Lokalisation von Na+ und Cl in Zellen und Geweben. Protoplasma55, 414–418.

    Google Scholar 

  • —, andU. Komnick, 1963: Elektronenmikroskopische Untersuchungen zur funktioneilen Morphologie des lontransportes in der Salzdrüse vonLarus argentatus. V. Experimenteller Nachweis der Transportwege. Z. Zellforsch.60, 163–203.

    Google Scholar 

  • Lane, B. P., andE. Martin, 1969: Electron probe analysis of cationic species in pyroantimonate precipitates in Epon-embedded tissue. J. Histochem. Cytochem.17, 102–106.

    Google Scholar 

  • Legato, M. J., andG. A. Langer, 1969: The subcellular localization of calcium ion in mammalian myocardium. J. Cell Biol.41, 401–423.

    Google Scholar 

  • Mizuhira, V., 1973: Demonstration of the elemental distribution in biological tissues by means of the electron microscope and electron probe X-ray microanalyser. Acta. Histochem. Cytochem.6, 44–52.

    Google Scholar 

  • Reynolds, E., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–213.

    Google Scholar 

  • Robards, A. W., S. M. Jackson, D. T. Clarkson, andJ. Sanderson, 1973: The structure of barley roots in relation to the transport of ions into the stele. Protoplasma77, 291–311.

    Google Scholar 

  • Shiina, S., V. Mizuhira, T. Amakawa, andY. Futaesaku, 1970: An analysis of the histochemical procedure for sodium ion detection. J. Histochem. Cytochem.18, 644–649.

    Google Scholar 

  • Simson, J. A. V., andS. S. Spicer, 1975: Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique. J. Histochem. Cytochem.23, 575–598.

    Google Scholar 

  • Soltesz, M. B., Sr. Gomba, andJ. Szabo, 1972: The effect of the pH and phosphate ions on the precipitate formation reaction of sodium ions with pyroantimonate. Histochemie30, 269–271.

    Google Scholar 

  • Spicer, S. S., J. H. Hardin, andW. B. Greene, 1968: Nuclear precipitates in pyroantimonate osmium tetroxide-fixed tissue. J. Cell Biol.39, 216–221.

    Google Scholar 

  • —, andA. A. Swanson, 1972: Elemental analysis of precipitates formed in nuclei by antimonate-osmium tetroxide fixation. J. Histochem. Cytochem.20, 518–526.

    Google Scholar 

  • Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    Google Scholar 

  • Sumi, S. M., 1971: Variations in the location and size of pyroantimonate precipitates in the immature rat cerebral cortex. J. Histochem. Cytochem.19, 591–604.

    Google Scholar 

  • —, andP. D. Swanson, 1971: Limitations of the pyroantimonate technique for localisation of sodium in isolated cerebral tissues. J. Histochem. Cytochem.19, 605–610.

    Google Scholar 

  • Tandler, C. J., andA. L. Kierszenbaum, 1971: Inorganic cations in rat kidney. Localization with potassium pyroantimonate perfusion fixation. J. Cell Biol.50, 830–839.

    Google Scholar 

  • —,C. M. Libanati, andC. A. Sanchis, 1970: The intracellular localization of inorganic cations with potassium antimonate. Electron microscopy and microprobe analysis. J. Cell Biol.45, 355–366.

    Google Scholar 

  • —,M. C. Risueno, andM. E. Fernandez-Gomez, 1973: Inorganic cations inAllium cepa roots. Intracellular localizations. Protoplasma77, 201–210.

    Google Scholar 

  • Tisher, C. C., W. J. Cirksena, A. U. Arstila, andB. F. Trump, 1969: Subcellular localization of sodium in normal and injured proximal tubules of the rat kidney. Amer. J. Pathol.57, 231–237.

    Google Scholar 

  • —,B. A. Weavers, andW. J. Cirksena, 1972: X-ray microanalysis of pyroantimonate complexes in rat kidney. Amer. J. Pathol.69, 255–266.

    Google Scholar 

  • Torack, R. M., andM. La Valle, 1970: The specificity of the pyroantimonate technique to demonstrate sodium. J. Histochem. Cytochem.18, 635–643.

    Google Scholar 

  • Tres, L. L., A. L. Kierszenbaum, andC. J. Tandler, 1972: Inorganic cations in the cell nucleus. Selective accumulation during meiotic prophase in mouse testis. J. Cell Biol.53, 483–493.

    Google Scholar 

  • van Steveninck, R. F. M., M. E. van Steveninck, T. A. Hall, andP. D. Peters, 1974: A chlorine-free embedding medium for use in X-ray analytical electron microscope localization of chloride in biological tissues. Histochem.38, 173–180.

    Google Scholar 

  • Walton, A. G., 1967: The formation and properties of precipitates. New York: Interscience.

    Google Scholar 

  • Weast, R. C. (Ed.), 1968–1969: Handbook of Chemistry and Physics. 14th edition. Cleveland-Ohio: The Chemical Rubber Company.

    Google Scholar 

  • Weavers, B. A., 1971: Combined high resolution electron microscopy and electron probe X-ray microanalysis and its applications to medicine and biology. Micron2, 390–404.

    Google Scholar 

  • —, 1973: The potentiality of EMMA-4, the analytical electron microscope, in histochemistry: a review. Histochem. J.5, 173–193.

    Google Scholar 

  • Yarom, R., P. D. Peters, T. A. Hall, J. Kedem, andS. Rogel, 1974: Studies with EMMA-4 on changes in the intracellular concentration and distribution of Ca++ in heart muscle of the dog in different steady states. Micron5, 11–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Steveninck, M.E., van Steveninck, R.F.M., Peters, P.D. et al. X-ray microanalysis of antimonate precipitates in barley roots. Protoplasma 90, 47–63 (1976). https://doi.org/10.1007/BF01276479

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276479

Keywords

Navigation