Skip to main content

Methods for Visualizing Elemental Distribution in Hyperaccumulator Plants

  • Chapter
  • First Online:
Agromining: Farming for Metals

Abstract

Crucial to many investigations on the ecophysiology of hyperaccumulator plants is visualization of the spatial distribution of metal(loid)s in their tissues. A wide variety of methods can be used to obtain information on the distribution of elements in plant tissues, and X-ray elemental mapping techniques are especially widely used. Microanalytical investigations place strict demands on sample collection, preparation, and analytical conditions, in order to avoid elemental redistribution, chemical modification, or ultrastructural alterations. This chapter summarizes a range of techniques that can be used to visualise the elemental distribution in hyperaccumulator plants, including synchrotron and laboratory-based X-ray fluorescence microscopy (micro-XRF), proton-induced X-ray emission (PIXE), scanning/transmission electron microscopy with energy-dispersive X-ray spectroscopy (SEM/TEM-EDS), laser ablation-inductively-coupled plasma—mass spectrometry (LA-ICP-MS), nanoscale secondary ion mass spectroscopy (NanoSIMS), autoradiography, histochemical methods, and confocal microscopy using fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Bernacchi CJ, Dohleman FG (2016) Focus on ecophysiology. Plant Physiol 172:619–621

    Google Scholar 

  • Agrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 5288:7351–7362

    Article  CAS  Google Scholar 

  • Becker JS, Matusch A, Wu B (2014) Bioimaging mass spectrometry of trace elements—recent advance and applications of LA-ICP-MS: a review. Anal Chim Acta 835:1–18

    Article  CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Orlic I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii Bailey using nuclear microprobe (micro-PIXE) and EDXS techniques. Funct Plant Biol 31:1061–1074

    Article  CAS  Google Scholar 

  • Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissues. Protoplasma 146:133–142

    Article  Google Scholar 

  • Budka D, Mesjasz-Przybyłowicz J, Tylko G, Przybyłowicz WJ (2005) Freeze-substitution methods for Ni localization and quantitative analysis in Berkheya coddii leaves by means of PIXE. Nucl Instr Meth B 231:338–344

    Article  CAS  Google Scholar 

  • Callahan DL, Hare DJ, Bishop DP, Doble PA, Roessner U (2016) Elemental imaging of leaves from the metal hyperaccumulating plant Noccaea caerulescens shows different spatial distribution of Ni, Zn and Cd. RSC Adv 6:2337–2344

    Article  CAS  Google Scholar 

  • Castillo-Michel HA, Larue C, Pradas del Real AE, Cotte M, Sarret G (2017) Practical review on the use of synchrotron based micro- and nano-X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol Biochem 110:13–32

    Article  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Article  CAS  Google Scholar 

  • Danscher G (1984) Autometallography: a new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochem 81:331–335

    Article  CAS  Google Scholar 

  • De Rue C, Gibouin D, Demarty M, Verdus M-C, Lefebvre F, Thellier M, Ripoll C (2006) Dynamic-SIMS imaging and quantification of inorganic ions in frozen-hydrated plant samples. Microsc Res Tech 69:53–63

    Article  CAS  Google Scholar 

  • Donner E, Punshon T, Guerinot M, Lombi E (2012) Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402:3287–3298

    Article  CAS  Google Scholar 

  • Donner E, de Jonge MD, Kopittke PM, Lombi E (2013) Mapping element distributions in plant tissues using synchrotron X-ray fluorescence techniques. In: Frans Maathuis JM (ed) Plant mineral nutrients: methods and protocols, methods in molecular biology, vol 953, Springer Science+Business Media

    Google Scholar 

  • Eticha D, Stass A, Horst J (2005) Localization of aluminum in the maize root apex: can morin detect cell wall-bound aluminum? J Exp Bot 56:1351–1357

    Article  CAS  Google Scholar 

  • Ferry-Graham LA, Gibb AC (2008) Ecophysiology. In: Encyclopedia of ecology. Elsevier, pp 1121–1125

    Google Scholar 

  • Fittschen UEA, Kunz H-H, Höhner R, Tyssebotn IMB, Fittschen A (2017) A new micro X-ray fluorescence spectrometer for in vivo elemental analysis in plants. Xray Spectrom 46:374–381

    Article  CAS  Google Scholar 

  • Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687

    Article  CAS  Google Scholar 

  • Gao W, Nan T, Tan G, Zhao H, Tan W, Meng F, Li Z, Li QX, Wang B (2015) Cellular and subcellular immunohistochemical localization and quantification of cadmium ions in wheat (Triticum aestivum). PLoS ONE 10:e0123779–16

    Google Scholar 

  • Graves WS, Bessuille J, Brown P, Carbajo S, Dolgashev V, Hong KH, Ihloff E, Khaykovich B, Lin H, Murari K, Nanni EA, Resta G, Tantawi S, Zapata LE, Kärtner FX, Moncton DE (2014) Compact X-ray source based on burst-mode inverse Compton scattering at 100 kHz. Phys Rev ST Accel Beams 17:120701

    Article  CAS  Google Scholar 

  • Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact X-ray source. Appl Phys Lett 83:1483

    Article  CAS  Google Scholar 

  • Hoppe P, Cohen S, Meibom A (2013) NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand Geoanal Res 37:111–154

    Article  CAS  Google Scholar 

  • Hu P-J, Qiu R-L, Senthilkumar P, Jiang D, Chen Z-W, Tang Y-T, Liu F-J (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Hu P-J, Gan Y-Y, Tang Y-T, Zhang Q-F, Jiang D, Yao N, Qiu R-L (2012) Cellular tolerance, accumulation and distribution of cadmium in leaves of hyperaccumulator Picris divaricata. Pedosphere 22:497–507

    Article  CAS  Google Scholar 

  • Hu P, Wang Y, Przybyłowicz WJ, Li Z, Barnabas A, Wu L, Luo Y, Mesjasz-Przybyłowicz J (2015) Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally. Plant Soil 388:267–282

    Article  CAS  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthès V, Isaure M-P, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65

    Article  CAS  Google Scholar 

  • Ingle RA, Fricker MD, Smith JAC (2008) Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum. Plant Biol 10:746–753

    Article  CAS  Google Scholar 

  • Johansson SAE, Campbell JL, Malmqvist KG (eds) (1995) Particle-induced X-ray emission spectrometry (PIXE). Wiley, Chichester

    Google Scholar 

  • Jones MWM, Kopittke PM, Casey LW, Reinhardt J, Pax F, Blamey C, van der Ent A (2020) Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. Ann Bot 125(4):599–610

    Article  CAS  Google Scholar 

  • Kirkham R, Dunn PA, Kuczewski AJ, Siddons DP, Dodanwela R, Moorhead GF, Ryan CG, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson DJ, de Jonge MD, Howard DL, Küsel M, McKinlay J (2010) The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing. AIP Conf Proc 1234:240–243

    Article  CAS  Google Scholar 

  • Koosaletse-Mswela P, Przybyłowicz WJ, Cloete KJ, Barnabas AD, Torto N, Mesjasz-Przybyłowicz J (2015) Quantitative mapping of elemental distribution in leaves of the metallophytes Helichrysum candolleanum, Blepharis aspera, and Blepharis diversispina from Selkirk Cu-Ni mine, Botswana. Nucl Instr Meth Phys Res B 363:188–193

    Article  CAS  Google Scholar 

  • Kopittke PM, Punshon T, Paterson DJ et al (2018) Synchrotron-based X-ray fluorescence microscopy as a technique for imaging of elements in plants. Plant Physiol 178:507–523

    Article  CAS  Google Scholar 

  • Kopittke PM, Lombi E, van der Ent A et al (2020) Methods to visualize elements in plants. Plant Physiol 182:1869–1882

    Article  CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519

    Article  CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Gosti F, Schat H (2016) Zinc accumulation and distribution over tissues in Noccaea caerulescens in nature and in hydroponics: a comparison. Plant Soil 411(1):5–16

    Google Scholar 

  • Lombi E, Susini J (2009) Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320:1–35

    Article  CAS  Google Scholar 

  • Lombi E, Scheckel KG, Kempson IM (2011) In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot 72:3–17

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  CAS  Google Scholar 

  • Macnair MR, Smirnoff N (1999) Use of Zincon to study uptake and accumulation of zinc by zinc tolerant and hyperaccumulating plants. Commun Soil Sci Plant Anal 30:7–8

    Article  Google Scholar 

  • Mandò PA, Przybyłowicz WJ (2016) Particle-induced X-ray emission (PIXE). In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, pp 1–48

    Google Scholar 

  • McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2002) Micro-PIXE in plant sciences: present status and perspectives. Nucl Instr Meth Phys Res B 189:470–481

    Article  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2011) PIXE and metal hyperaccumulation: from soil to plants and insects. X-Ray Spectrom 40(3):181–185

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2020) Ecophysiology of nickel hyperaccumulating plants from South Africa—from soil and mycorrhiza to plants and insects. Metallomics 12:1018–1035.

    Article  Google Scholar 

  • Mesjasz-Przybyłowicz J, Balkwill KWJ, Przybylowicz HJ, Annegarn (1994) Proton microprobe and X-ray fluorescence investigations of nickel distribution in serpentine flora from South Africa. Nucl Instr Meth Phys Res B 89:208–212

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Barnabas A, Przybyłowicz W (2007) Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293:61–78

    Article  CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A (2016) Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209:1513–1526

    Article  CAS  Google Scholar 

  • Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 1758:846–857

    Article  CAS  Google Scholar 

  • Mizuno N, Nosaka S, Mizuno T, Horie K, Obata H (2003) Distribution of Ni and Zn in the leaves of Thlaspi japonicum growing on ultramafic soil. Soil Sci Plant Nutr 49:93–97

    Article  CAS  Google Scholar 

  • Moore KL, Schroder M, Wu Z, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Feng Ma J, Zhao FJ, Grovenor CRM (2011) High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiol 156:913–924

    Article  CAS  Google Scholar 

  • Moradi AB, Oswald SE, Nordmeyer-Massner JA, Pruessmann KP, Robinson BH, Schulin R (2009) Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations. Plant Soil 328:291–302

    Article  CAS  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz D, Aronson M, Merriam GR (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba Province, Zaïre. Phytochem 20:455–458

    Article  CAS  Google Scholar 

  • Pallon J, Ryan CG, Arteaga Marrero N, Elfman M, Kristiansson P, Nilsson EJC, Nilsson C (2009) STIM evaluation in GeoPIXE to complement the quantitative dynamic analysis. Nucl Instr Meth Phys Res B 267:2080–2084

    Article  CAS  Google Scholar 

  • Paterson D, de Jonge MD, Howard DL, Lewis W, McKinlay J, Starritt A, Kusel M, Ryan CG, Kirkham R, Moorhead G, Siddons DP (2011) The X-ray fluorescence microscopy beamline at the Australian Synchrotron. AIP Conf Proc 1365(1):219–222

    Article  Google Scholar 

  • Pozebon D, Scheffler GL, Dressler VL, Nunes MAG (2014) Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J Anal At Spectrom 29:2204–2228

    Article  CAS  Google Scholar 

  • Pozebon D, Scheffler GL, Dressler VL (2017) Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J Anal At Spectrom 32:890–919

    Article  CAS  Google Scholar 

  • Przybylowicz WJ, Mesjasz-Przybylowicz J, Prozesky VM, Pineda CA (1997) Botanical applications in nuclear microscopy. Nucl Instr Meth Phys Res B 130:335–345

    Article  CAS  Google Scholar 

  • Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103:665–672

    Article  CAS  Google Scholar 

  • Punshon T, Ricachenevsky FK, Hindt MN, Socha AL, Zuber H (2013) Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: examples from Arabidopsis thaliana. Metallomics 5:1133–1145

    Article  CAS  Google Scholar 

  • Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Revs 114:8499–8541

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

  • Rodrigues ES, Gomes MHF, Duran NM et al (2018) Laboratory microprobe X-ray fluorescence in plant science: emerging applications and case studies. Front Plant Sci 871:1

    Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Dunn PA, Kuczewski A, Moorhead G, De Geronimo G, Paterson DJ, de Jonge MD, Hough RM, Lintern MJ, Howard DL, Kappen P, Cleverley J (2010) The new Maia detector system: methods for high definition trace element imaging of natural material. AIP Conf Proc 1221:9–17

    Article  CAS  Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Li ZY, Jonge MDd, Paterson DJ, Kuczewski A, Howard DL, Dunn PA, Falkenberg G, Boesenberg U, Geronimo GD, Fisher LA, Halfpenny A, Lintern MJ, Lombi E, Dyl KA, Jensen M, Moorhead GF, Cleverley JS, Hough RM, Godel B, Barnes SJ, James SA, Spiers KM, Alfeld M, Wellenreuther G, Vukmanovic Z, Borg S (2014) Maia X-ray fluorescence imaging: capturing detail in complex natural samples. J Phys Conf Ser 499(1):012002

    Article  Google Scholar 

  • Sarret G, Pilon Smits EAH, Castillo Michel H, Isaure MP, Zhao FJ, Tappero R (2013) Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv Agron 119:1–82

    Article  CAS  Google Scholar 

  • Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45

    Article  CAS  Google Scholar 

  • Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int J Mass Spectrom 260:107–114

    Article  CAS  Google Scholar 

  • Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63(5):870–879

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy-resin embedding medium for electron microscopy. J Ultrastruc Res 26:31–43

    Article  CAS  Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    Article  CAS  Google Scholar 

  • Turnau K, Przybyłowicz WJ, Mesjasz-Przybyłowicz J (2001) Heavy metal distribution in Suillus luteus mycorrhizas—as revealed by micro-PIXE analysis. Nucl Instr Meth Phys Res B 181:649–658

    Article  CAS  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007a) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68

    Article  CAS  Google Scholar 

  • Tylko G, Mesjasz-Przybylowicz J, Przybylowicz WJ (2007b) In-vacuum micro-PIXE analysis of biological specimens in frozen-hydrated state. Nucl Instr Meth Phys Res B 260:141–148

    Article  CAS  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861

    Article  CAS  Google Scholar 

  • van der Ent A, Przybyłowicz WJ, de Jonge MD, Harris HH, Ryan CG, Tylko G, Paterson DJ, Barnabas AD, Kopittke PM, Mesjasz-Przybyłowicz M (2018) X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol 218:432–452

    Article  CAS  Google Scholar 

  • van der Ent A, de Jonge MD, Mak R, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Barnabas AD, Harris HH (2020a) X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant Soil 15–36

    Google Scholar 

  • van der Ent A, Vinya R, Erskine PD, Malaisse F, Przybyłowicz WJ, Barnabas AD, Harris HH, Mesjasz-Przybyłowicz J (2020b) Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the Copper-Cobalt Belt in Northern Zambia. Metallomics 12:682–701.

    Article  Google Scholar 

  • Vavpetič P, Pelicon P, Vogel-Mikuš K, Grlj N, Pongrac P, Jeromel L, Ogrinc N, Regvar M (2013) Micro-PIXE on thin plant tissue samples in frozen hydrated state: a novel addition to JSI nuclear microprobe. Nucl Instr Meth Phys Res B 306:140–143

    Article  CAS  Google Scholar 

  • Vijayan P, Willick IR, Lahlali R, Karunakaran C, Tanino KK (2015) Synchrotron radiation sheds fresh light on plant research: the use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol 56:1252–1263

    Article  CAS  Google Scholar 

  • Wang YD, Mesjasz-Przybylowicz J, Tylko G, Barnabas AD, Przybylowicz WJ (2013) Micro-PIXE analyzes of frozen-hydrated semi-thick biological sections. Nucl Instr Meth Phys Res B 306:134–139

    Article  CAS  Google Scholar 

  • Warley A (1997) X-ray microanalysis for biologists. Practical methods in electron microscopy 16, Portland Press Ltd., London, pp 1–276

    Google Scholar 

  • Watson RE, Perlman ML (1978) Seeing with a new light: synchrotron radiation. Science 199:1295–1302

    Article  CAS  Google Scholar 

  • Wu B, Zoriy M, Chen Y, Becker JS (2009) Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 78:132–137

    Article  CAS  Google Scholar 

  • Wu B, Becker J (2012) Imaging techniques for elements and element species in plant science. Metallomics 4:403–416

    Article  CAS  Google Scholar 

  • Zhao F-J, Moore KL, Lombi E, Zhu Y-G (2014) Imaging element distribution and speciation in plant cells. Trends Plant Sci 19:183–192

    Article  CAS  Google Scholar 

  • Zierold K (1988) X-ray microanalysis of freeze-dried and frozen-hydrated cryosections. Microsc Res Tech 9:65–82

    Article  CAS  Google Scholar 

  • Zierold K (2002) Limitations and prospects of biological electron probe X-ray microanalysis. J Trace and Microprobe Techniques 20:181–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have greatly benefited from the expertise in plant anatomy and microscopy from Prof Alban Barnabas over many years. Imam Purwadi is the recipient of an Australian Government Research Training Program Scholarship and an UQ Centennial Scholarship at The University of Queensland, Australia. Parts of this research was undertaken using the X-Ray Fluorescence Microscopy (XFM) beamline of the Australian Synchrotron, part of ANSTO. Research was also undertaken at the Centre for Microscopy and Microanalysis at The University of Queensland. W.J. Przybyłowicz and J. Mesjasz-Przybyłowicz are recipients of the South African National Research Foundation incentive grants No 114693 and 114694, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony van der Ent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Ent, A., Purwadi, I., Harris, H.H., Kopittke, P.M., Przybyłowicz, W.J., Mesjasz-Przybyłowicz, J. (2021). Methods for Visualizing Elemental Distribution in Hyperaccumulator Plants. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_10

Download citation

Publish with us

Policies and ethics