Skip to main content
Log in

A morphometric method for correcting phytoplankton cell volume estimates

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Cell volume calculations are often used to estimate biomass of natural phytoplankton assemblages. Such estimates may be questioned due to morphological differences in the organisms present. Morphometric analysis of 8 species representative of phytoplankton types found in the Great Lakes shows significant differences in cell constituent volumes. Volume of physiologically inert wall material ranges from nil, in some flagellates, to over 20% of the total cell volume in certain diatoms. Likewise, “empty” vacuole may comprise more than 40% of the total cell volume of some diatoms, but less than 3% of the volume of some flagellates. In the organisms investigated, the total carbon containing cytoplasm ranged from 52% to 98% of the total cell volume and the metabolizing biovolume ranged from 30% to 82%. Although these differences complicate direct biomass estimation, morphometric analysis at the ultrastructural level may provide ecologically valuable insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, A. W. Jr., P. C. L. John, andB. E. S. Gunning, 1974: The growth and division of the single mitochondrion and other organelles during the cell cycle ofChlorella, studied by quantitative stereology and three dimensional reconstruction. Protoplasma81, 77–109.

    PubMed  Google Scholar 

  • Bellinger, E. G., 1974: A note on the use of algal sizes in estimates of population standing crops. Br. Phycol. J.9, 157–161.

    Google Scholar 

  • Brown, T. E., andF. L. Richardson, 1968: The effect of growth environment on the physiology of algae: Light intensity. J. Phycol.4, 38–54.

    Google Scholar 

  • Chalkey, H. W., 1943: Methods for the quantitative morphologic analysis of tissues. J. nat. Cancer Inst.4, 47.

    Google Scholar 

  • Collyer, D. M., andG. E. Fogg, 1955: Studies on fat accumulation by algae. J. exp. Bot.6, 256–275.

    Google Scholar 

  • Delesse, M. A., 1847: Procédé mécanique pour determiner la composition des roches. C. R. Acad. Sci. (Paris)25, 444.

    Google Scholar 

  • Fogg, G. E., 1966: Algal cultures and Phytoplankton ecology, 126 pp. Madison, Wisconsin: University of Wisconsin Press.

    Google Scholar 

  • Glagoleff, A. A., 1933: On the geometrical methods of quantitative mineralogic analysis of rocks. Tr. Inst. Econ. Min. and Metal, Moscow. Volume 59.

    Google Scholar 

  • Hibberd, D. J., 1976: The ultrastructure of theChrysophyceae andPrymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of theChrysophyceae. Bot. J. Lin. Soc.72, 55–80.

    Google Scholar 

  • Holmes, R. W., 1966: Light microscope observations on cytological manifestations of nitrate, phosphate, and silicate deficiency in four marine centric diatoms. J. Phycol.2, 136–140.

    Google Scholar 

  • Humphreys, R. E., 1973: Sucrose transport at the tonoplast. Phytochem.12, 1201–1219.

    Google Scholar 

  • Laties, G. G., 1969: Dual mechanisms of salt uptake in relation to compartmentation and long distance transport. Ann. Rev. Plant Physiol.20, 89–116.

    Google Scholar 

  • Lohmann, H., 1908: Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresuntersuch. Abt. Kiel N. F.10, 131–370.

    Google Scholar 

  • Loud, A. V., 1968: A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell Biol.37, 27–45.

    PubMed  Google Scholar 

  • Luft, J. H., 1961: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414.

    PubMed  Google Scholar 

  • Messer, G., andY. Ben-Shaul, 1972: Changes in chloroplast structure during culture growth ofPeridinium cinctum Fa.Westii (Dinophyceae). Phycologia11, 291–299.

    Google Scholar 

  • Mullin, M. M., P. R. Sloan, andP. W. Eppley, 1966: Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr.11, 307–311.

    Google Scholar 

  • Nalewajko, C., 1966: Dry weight, ash, and volume data for some freshwater planktonic algae. J. Fish. Res. Bd. Can.23, 1285–1288.

    Google Scholar 

  • Paasche, E., 1960: On the relationship between primary production and standing stock of phytoplankton. J. Conseil, Conseil Perm. Intern. Exploration Mer.26, 33–48.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol.17, 208–212.

    PubMed  Google Scholar 

  • Sorokin, C., andR. W. Krauss, 1958: The effect of light intensity on the growth rates of green algae. Plant Physiol.33, 109–113.

    Google Scholar 

  • — —, 1965: The dependence of cell division inChlorella on temperature and light intensity. Amer. J. Bot.52, 331–339.

    Google Scholar 

  • Stempak, J. F., andR. T. Ward, 1964: An improved staining method for electron microscopy. J. Cell Biol.22, 697–701.

    PubMed  Google Scholar 

  • Strathmann, R. R., 1967: Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr.12, 411–418.

    Google Scholar 

  • Underwood, E. E., 1970: Quantitative Stereology, 274 pp. Reading, Mass.: Addison-Wesley.

    Google Scholar 

  • Vollenweider, R. A., M. Munawar, andP. Stadelmann, 1974: A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Bd. Can.31, 739–762.

    Google Scholar 

  • Weibel, E. R., andR. B. Bolender, 1973: Stereological techniques for electron microscopic morphometry. In: Principles and techniques of electron microscopy. Biological Applications (Hayat, M. A., ed.), Volume 3, pp. 239–296. New York: Van Nostrand Reinhold.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sicko-Goad, L., Stoermer, E.F. & Ladewski, B.G. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93, 147–163 (1977). https://doi.org/10.1007/BF01275650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275650

Keywords

Navigation