Skip to main content
Log in

Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscope

FESEM:

field emission scanning electron microscope

PyMS:

pyrolysis mass spectrometry

TEM:

transmission electron microscope

References

  • Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic- force microscope implemented using an optical lever. J Appl Phys 65: 164–167

    Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies with scanning tunneling microscopy. Phys Rev Lett 49: 57–61

    Google Scholar 

  • —, Quate CF, Gerber C (1986) The atomic force microscope. Phys Rev Lett 56: 930–933

    Google Scholar 

  • Bustamante C, Keller D, Yang G (1993) Scanning force microscopy of nucleic acids and nucleoprotein assemblies. Curr Opin Struct Biol 3: 363–372

    Google Scholar 

  • Butt HJ, Wolff EK, Gould SAC, Dixon Northern B, Peterson CM, Hansma PK (1990) Imaging cells with the atomic force microscope. J Struct Biol 105: 54–61

    Google Scholar 

  • Cooper JB, Heuser JE, Varner JE (1994) 3,4-Dehydroproline inhibits cell wall assembly and cell division in tobacco protoplasts. Plant Physiol 104: 747–753

    Google Scholar 

  • Cresti M, Blackmore S, Van Went JL (1992) Atlas of sexual reproduction in flowering plants. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Driessen MNBM, Derksen JWM, Spieksma FTM, Roetman E (1988) Pollenatlas van de Nederlandse atmosfeer. Fisons Pharmaceuticals BV, Leusden

    Google Scholar 

  • Droz E, Taborelli M, Wells NC, Descouts P (1993) Preparation of isolated biomolecules for SFM observations: T4 bacteriophage as a test sample. Biophys J 65: 1180–1187

    Google Scholar 

  • Emons AMC (1988) Methods for visualizing cell wall texture. Acta Bot Neerl 37: 31–38

    Google Scholar 

  • —, (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98

    Google Scholar 

  • —, Kieft H (1991) Histological comparison of single somatic embryos of maize from suspension culture with somatic embryos attached to callus cells. Plant Cell Rep 10: 485–488

    Google Scholar 

  • — — (1994) Winding threads around plant cells: applications of the geometrical model for microfibril deposition. Protoplasma 180: 59–69

    Google Scholar 

  • —, Wolters-Arts AMC (1983) Cortical microtubules and microfibril deposition in the cell wall of root hairs ofEquisetum hyemale. Protoplasma 117: 68–81

    Google Scholar 

  • —, Mulder MM, Kieft H (1993) Pyrolysis mass spectrometry of developmental stages of maize somatic embryos. Acta Bot Neerl 42: 319–339

    Google Scholar 

  • Fry SC (1988) The growing plant cell wall; chemical metabolic analyses. Longman, New York

    Google Scholar 

  • Gunning AP, McMaster TJ, Morris VJ (1993) Scanning tunneling microscopy of xanthan gum. Carbohydr Polymer 21: 47–51

    Google Scholar 

  • Häberle W, Hörber JKH, Binnig G (1991) Force microscopy on living cells. J Vac Sci Technol B 9: 1210–1213

    Google Scholar 

  • Hanley SJ, Giasson J, Revol JF, Gray DG (1992) Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33: 4639–4642

    Google Scholar 

  • Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256: 1180–1184

    Google Scholar 

  • —, Sinsheimer RL, Groppe J, Bruice TC, Elings V, Gurley G, Benzanilla M, Mastrangelo IA, Hough PVC, Hansma PK (1993) Recent advances in atomic force microscopy of DNA. Scanning 15: 296–299

    Google Scholar 

  • Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunana L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64: 1738–1740

    Google Scholar 

  • Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257: 1944–1946

    Google Scholar 

  • Hoh JH, Hansma PK (1992) Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell Biol 2: 208–213

    Google Scholar 

  • —, Lal R, John SA, Revel JP, Arnsdorf MF (1991) Atomic force microscopy and dissection of gap junctions. Science 253: 1405–1408

    Google Scholar 

  • Ikonomovic MD, Armstrong DM, Yen SH, Obcemea C, Vidic B (1995) Atomic force microscopy of paired helical filaments isolated from the autopsied brains of patients with Alzheimer's disease and immunolabeled against microtubule-associated protein Tau. Am J Pathol 147: 516–528

    Google Scholar 

  • Iwanami Y, Sasakuma T, Yamada Y (1988) Pollen: illustrations and scanning electron micrographs. Kodansha, Tokyo, Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Keller DJ, Chih-Chung C (1992) Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surface Sci 268: 333–339

    Google Scholar 

  • Kuga S, Brown RM (1991) Physical structure of cellulose microfibrils: implications for biogenesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 125–142

    Google Scholar 

  • Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53: 2400–2402

    Google Scholar 

  • Müller WH, Van Aelst AC, Van der Krift TP, Boekhout T (1994) Scanning electron microscopy of the septal pore cap of the basidiomyceteSchizophyllum commune. Can J Microbiol 40: 879–883

    Google Scholar 

  • Overney MR, Meyer E, Frommer J, Brodbeck D, Lüthi R, Howald L, Güntherodt HJ, Fujihira M, Takano H, Gotoh Y (1992) Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 359: 133–135

    Google Scholar 

  • Parpura V, Haydon PG, Henderson E (1993) Three dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci 104: 427–432

    Google Scholar 

  • Pidduck A (1993) Applications of the atomic force microscope. Proc R Microsc Soc 28: 133–138

    Google Scholar 

  • Putman CAJ (1994) Tapping atomic force microscopy in liquid. Appl Phys Lett 64: 2454–2456

    Google Scholar 

  • —, van der Werf KO, de Grooth BG, van Hulst NF, Greve J, Hansma PK (1992) A new imaging mode in atomic force microscopy based on the error signal. Soc Photo Opt Eng Proc 1639: 198–204

    Google Scholar 

  • —, Dietrich AJJ, de Grooth BG, van Marie J, Heyting C, van Hulst NF, Greve J (1993a) An atomic force microscopical study of the synaptonemal complex. Micron 24: 273–277

    Google Scholar 

  • —, De Grooth BG, Hansma PK, Van Hulst NF, Greve J (1993b) Immunogold labels: cell-surface markers in atomic force microscopy. Ultramicroscopy 48: 177–182

    Google Scholar 

  • Roberts CJ, Williams PM, Davies MC, Jackson DE, Tendier SJB (1994) Atomic force microscopy and scanning tunneling microscopy: refining techniques for studying biomolecules. Trends Biotechnol 12: 127–132

    Google Scholar 

  • Ruben GC (1987) Triple-stranded, left-hand-twisted cellulose microfibril. Carbohydr Res 160: 434–443

    Google Scholar 

  • Russ JC (1993) Effects of noise and anisotropy on the determination of fractal dimensions. J Microsc 172: 239–248

    Google Scholar 

  • Sassen MMA, Traas JA, Wolters-Arts AMC (1985) Deposition of cellulose microfibrils in cell walls of root hairs. Eur J Cell Biol 37: 21–26

    Google Scholar 

  • Tomie T, Shimizu H, Majima T, Yamada M, Kanayama T, Kondo H, Yano M, Ono M (1991) Three-dimensional readout of flash X- ray images of living sperm in water by atomic-force microscopy. Science 252: 691–693

    Google Scholar 

  • Van Cullen DC, McKerr G, Hughes EM (1993) Biological applications for SPM. Eur Microsc Anal 1993/Sept: 29–31

    Google Scholar 

  • Van der Werf KO, Putman CAJ, De Grooth, Segerink FB, Schipper EH, Van Hulst NF, Greve J (1993) Compact stand-alone atomic force microscope. Rev Sci Instr 64: 2892–2897

    Google Scholar 

  • Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C (1992) A substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42-44: 1243–1249

    Google Scholar 

  • —, Mosher C, Schaus S, Ambrosio L, Henderson E (1995) Combining optical and atomic force microscopy for life science research. Biotechnology 19: 240–253

    Google Scholar 

  • Weisenhorn AL, Drake B, Prater CB, Gould SAC, Hansma PK, Ohnesorge F, Egger M, Heyn SP, Gaub HE (1990) Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys J 58: 1251–1258

    Google Scholar 

  • Xu S, Arnsdorf MF (1994) Calibration of the scanning (atomic) force microscope with gold particles. J Microsc 173: 199–210

    Google Scholar 

  • Yang J, Shao (1995) Recent advances in biological atomic force microscopy. Micron 26: 35–49

    Google Scholar 

  • —, Tamm LK, Somlyo AP, Shao Z (1993) Promises and problems of biological atomic force microscopy. J Microsc 171: 183–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Wel, N.N., Putman, C.A.J., van Noort, S.J.T. et al. Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts. Protoplasma 194, 29–39 (1996). https://doi.org/10.1007/BF01273165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01273165

Keywords

Navigation