Skip to main content
Log in

Large inelastic strain analysis by multilayer shell elements

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The objective of this contribution is to model large inelastic strains of ductile metals, to couple this material model with a multilayer shell kinematics and finally to achieve a finite element formulation applicable in general form to shell analysis. Elasto-plastic constitutive law is formulated by using the multiplicative decomposition of the deformation gradient and Neo-Hookean model for elastic strains assuming an overall isotropic material behavior. These 3D-material model is then enforced directly into a multilayer shell kinematics which provides a very accurate consideration of local effects, particularly stresses across the thickness. Finite element formulation is accomplished by means of the enhanced strain concept. Thus the well known deficiencies due to incompressible deformations and the inclusion of transverse strains are avoided. Several examples are given to demonstrate the performance of the algorithms developed concerning various aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I: Continuum formulation. Comp. Meth. Appl. Mech. Eng.66, 199–219 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  2. Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part II: Computational aspects. Comp. Meth. Appl. Mech. Eng.68, 1–31 (1988).

    Article  MATH  Google Scholar 

  3. Cuitiño, A., Ortiz, M.: A material-independent method for extending stress update algorithms from small strain plasticity to finite with multiplicative kinematics. Eng. Comp.9, 437–451 (1992).

    Google Scholar 

  4. Moran, B., Ortiz, M., Shih, C. F.: Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Num. Meth. Eng.29, 483–514 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. Eterović, A. L., Bathe, K.-J.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int. J. Num. Meth. Eng.30, 1099–1114 (1990).

    Article  MATH  Google Scholar 

  6. Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids. Comp. Meth. Appl. Mech. Eng.79, 173–202 (1990).

    Article  MATH  Google Scholar 

  7. Perić, D., Owen, D. J. R., Honnor, M. E.: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues. Comp. Meth. Appl. Mech. Eng.94, 35–61 (1992).

    Article  MATH  Google Scholar 

  8. Simo, J. C., Miehe, C.: Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comp. Meth. Appl. Mech. Eng.94, 41–104 (1992).

    Article  Google Scholar 

  9. Simo, J. C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp. Meth. Appl. Eng.99, 61–112 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  10. Atluri, S. N.: On constitutive relations at finite strain: Hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comp. Meth. Appl. Mech. Eng.43, 137–171 (1984).

    Article  MATH  Google Scholar 

  11. Needleman, A.: On finite element formulations for large elastic-plastic deformations. Comp. & Struct.20, 247–257 (1985).

    Article  Google Scholar 

  12. Müller-Hoeppe, N.: Beiträge zur Theorie und Numerik finiter inelastischer Deformationen. PhD-Thesis, Forschungs- und Seminarbericht aus dem Bereich der Mechanik der Universität Hannover Nr. F 90/4, 1990.

  13. Hackenberg, H.-P.: Über die Anwendung inelastischer Stoffgesetze auf finite Deformationen mit der Methode der Finiten Elemente. PhD-Thesis, TH Darmstadt, Nr. D 17, 1992.

  14. Başar, Y., Eckstein, A.: Large inelastic strain analysis by multi-layer kinematics. In: Aspects in modern computational structural analysis (Meskouris, K., Wittek, U., eds.), pp. 121–136, Balkema Publishers, Rotterdam 1997.

    Google Scholar 

  15. Schieck, B., Stumpf, H.: Deformation analysis for finite elastic-plastic strains in a Lagrangean-type description. Int. J. Sol. Struct.30 (19), 2639–2660 (1993).

    Article  MATH  Google Scholar 

  16. Schieck, B., Stumpf, H.: The appropriate corotional rate, exact formula for the plastic spin and costitutive model for finite elastoplasticity. Int. J. Sol. Struct.32 (24), 3643–3667 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  17. Epstein, M., Glockner, P. G.: Nonlinear analysis of multilayered shells. Int. J. Sol. Struct.13, 1081–1089 (1977).

    Article  MATH  Google Scholar 

  18. Reddy, J. N.: On refined computational models of composite laminates. Int. J. Num. Meth. Eng.27, 361–382 (1989).

    Article  MATH  Google Scholar 

  19. Noor, A. K., Burton, W. S., Peters, J. M.: Assessment of computational models for multilayered composite cylinders. Int. J. Sol. Struct.27, 1269–1286 (1991).

    Article  Google Scholar 

  20. Başar, Y.: Finite-rotation theories for arbitrary composite laminates, Acta Mech.98, 159–176 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. Başar, Y., Ding, Y.: Interlaminar stress analysis of composites: Layer-wise shell finite elements including transverse strains. Composites Engineering5 (5), 485–499 (1995).

    Article  Google Scholar 

  22. Braun, M., Bischoff, M., Ramm, E.: Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comp. Mech.15, 1–18 (1994).

    Article  MATH  Google Scholar 

  23. Wagner, W., Gruttmann, F.: A simple finite rotation formulation for composite shell elements. Eng. Comp.11, 145–176 (1994).

    MathSciNet  Google Scholar 

  24. Başar, Y., Hanskötter, U., Ding, Y.: Finite element simulation of stress concentrations. In: Advances in computational engineering science (Alturi, S. N., Yagana, G., eds.), pp. 1232–1237, Int. Conf. on Computational Engineering Science 1997. San Jose, Costa Rica, 1997.

  25. Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept. Int. J. Num. Meth. Eng.37, 2551–2568 (1994).

    Article  MATH  Google Scholar 

  26. Betsch, P., Stein, E.: An assumed strain approach avoiding artifical thickness straining for a nonlinear 4-node shell element. Comm. Num. Meth. Eng.11, 899–909 (1995).

    Article  MATH  Google Scholar 

  27. Parisch, H.: A continuum-based shell theory for nonlinear applications. Int. J. Num. Meth. Eng.38, 1855–1883 (1993).

    Article  Google Scholar 

  28. Verhoeven, H.: Geometrisch und physikalisch nichtlineare finite Plattenelemente mit Berücksichtigung der Dickenverzerrung. PhD-Thesis, Technische Universität Berlin, Verlag Shaker, Aachen, 1993.

    Google Scholar 

  29. Sansour, C.: A theory and finite element formulation of shells at finite formulations involving thickness change: Circumventing the use of a rotation tensor. Arch. Appl. Mech.65, 194–216 (1995).

    Article  MATH  Google Scholar 

  30. Simo, J. C., Rifai, S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Eng.29, 1595–1638 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  31. Betsch, P., Gruttmann, F., Stein, E.: A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comp. Meth. Appl. Mech. Eng.130, 57–79 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  32. Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and deformations. Int. J. Num. Meth. Eng.40, 4427–4449 (1997).

    Article  MATH  Google Scholar 

  33. Seifert, B.: Zur Theorie und Numerik finiter elastoplastischer Deformationen von Schalenstrukturen. PhD-Thesis, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover Nr. F 96/2, 1996.

  34. Miehe, C.: A theoretical and computational model for isotropic elasto-plastic stress analysis in shells at large strains. Comp. Meth. Appl. Mech.155, 193–233 (1998).

    Article  MATH  Google Scholar 

  35. Kollmann, F. G., Sansour, C.: Viscoplastic Shells — Theory and numerical analysis. Arch. Mech.49, 477–511 (1997).

    MATH  Google Scholar 

  36. Wriggers, P., Eberlein, R., Reese, S.: A comparison of three-dimensional continuum and shell elements for finite plasticity. Int. J. Sol. Struct.33, 3309–3326 (1996).

    Article  MATH  Google Scholar 

  37. Eberlein, R.: Finite-Elemente-Konzepte für Schalen mit großen elastischen und plastischen Verzerrungen. PhD-Thesis, TH Darmstadt, Nr. D 17, 1997.

  38. Simo, J. C., Armero, F.: Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int. J. Num. Meth. Eng.33, 1413–1449 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  39. Stumpf, H., Schieck, B.: Theory and analysis of shells undergoing finite elasto-plastic strains and rotations. Acta Mech.106, 1–21 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  40. Dvorkin, E. N., Pantuso, P., Repetto, E. D.: A fromulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comp. Meth. Appl. Mech. Eng.125, 17–40 (1995).

    Article  Google Scholar 

  41. Roehl, D. de M., Ramm, E.: Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int. J. Sol. Struct.33, 3215–3237 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  42. Lee, E. H.: Elasto-plastic deformation at finite strains, J. Appl. Mech.36, 1–6 (1969).

    MATH  Google Scholar 

  43. Hackenberg, H.-P., Kollmann, F. G.: A general theory of finite inelastic deformation of metals based on the concept of unified constitutive models. Acta Mech.110, 217–239 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  44. Simo, J. C., Fox, D. D.: On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Eng.72, 267–304 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  45. Menzel, W.: Gemischt-hybride Elementformulierungen für komplexe Schalenstrukturen unter endlichen Rotationen. PhD-Thesis, Technisch-wissenschaftliche Mitteilung Nr. 96-4, Institut für konstruktiven Ingenieurbau, Ruhr-Universität Bochum, 1996.

  46. Celigoj, C. C.: A strain-and-displacement-based variational method applied to geometrically nonlinear shells. Int. J. Num. Meth. Eng.39 (13), 2231–2248 (1996).

    Article  MATH  Google Scholar 

  47. Wriggers, P., Reese, S.: A note on enhaced strain methods for large deformations. Comp. Meth. Appl. Mech. Eng.135, 201–209 (1996).

    Article  MATH  Google Scholar 

  48. Dvorkin, E. N., Bathe, K.-J.: A continuum mechanics based four-node shell element for general nonlinear analysis. Eng. Comput.1, 77–88 (1994).

    Google Scholar 

  49. Szabó, I.: Höhere Technische Mechanik, 4th ed. Berlin, Springer 1964.

    MATH  Google Scholar 

  50. Başar, Y., Ding, Y.: Finite element analysis of hyperelastic thin shells with large strains. Comput. Mech.18, 200–214 (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Başar, Y., Eckstein, A. Large inelastic strain analysis by multilayer shell elements. Acta Mechanica 141, 225–252 (2000). https://doi.org/10.1007/BF01268679

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01268679

Keywords

Navigation