Skip to main content
Log in

Laminar free convection heat transfer of a viscous incompressible heat generating fluid-flow past a vertical porous plate in the presence of free-stream oscillations. I

Laminarer freier Konvektionswärmeübergang von einer viskosen, inkompressiblen, Wärme erzeugenden Strömung hinter einer vertikalen, porösen Platte bei Vorhandensein von Freistromschwingungen. I.

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The title problem has been analysed with a view to estimate the effect of the temperature dependent heat sources (sinks) on the oscillatory flow and heat transfer. The governing equations have been reduced to two non-linear ordinary differential equations which have been solved approximately subject to the relevant boundary conditions. The flow- and heat-transfer characteristics have been found to depend on the heat source parameter α besides the usual free convection parameterG, the wall temperature-ratio parameterm, the Prandtl numberP and the Eckert numberE. For convenience the work has been divided into two parts, Part I dealing with the mean flow and heat transfer and the Part II with the unsteady flow and heat transfer. Several qualitatively interesting results concerning the effect of heat sources (sinks) on the mean flow and heat transfer have been pointed out clearly in Section 3.

Zusammenfassung

Das vorliegende Problem wird behandelt, um den Einfluß der temperaturabhängigen Wärmequellen (Senken) auf das Stromfeld und den Wärmeübergang abzuschätzen. Das System der Grundgleichungen wird auf zwei nichtlineare gewöhnliche Differentialgleichungen reduziert, die unter den gegebenen Randbedingungen gelöst werden. Die charakteristischen Bestimmungsstücke des Stromfeldes sowie des Wärmeüberganges hängen vom Wärmequellenparameter α, von der KonvektionskennzahlG, von dem Wand-Temperaturparameterm, der PrandtlzahlP und der Eckertzahl,E ab. Die Arbeit wurde in zwei Teile zerlegt. Teil I behandelt die mittlere Strömung und den Wärmeübergang. Teil II beschreibt die instationäre Strömung und den zugehörigen Wärmeübergang. Einige interessante Ergebnisse über den Einfluß der Wärmequellen auf die mittlere Strömung und den Wärmeübergang befinden sich in Abschnitt 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lighthill, M. J.: The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. (Lond.)A 224, 1 (1954).

    MathSciNet  MATH  Google Scholar 

  2. Stuart, J. T.: A solution of the Navier-Stokes and energy equations illustrating the response of skin friction and temperature of an infinite plate thermometer to fluctuations in the stream velocity. Proc. R. Soc. (Lond.)A 231, 116 (1955).

    MATH  Google Scholar 

  3. Soundalgekar, V. M.: Free convection effects on the oscillatory flow past an infinite, vertical, porous plate with constant suction. I. Proc. R. Soc. (Lond.)A 333, 25 (1973).

    MATH  Google Scholar 

  4. Soundalgekar, V. M.: Free convection effects on the oscillatory flow past an infinite, vertical, porous plate with constant suction. II. Proc. R. Soc. (Lond.)A 333, 37 (1973).

    MATH  Google Scholar 

  5. Veron, M.: Bull. Tech. Soc. France, Const. Babcock and Wilcox. No.21, Paris (1948).

  6. Lighthill, M. J.: F. M. 1958, Aero. Res. Council, July 1956.

  7. Lees, L.: Jet Propulsion26, 259 (1956).

    Article  Google Scholar 

  8. Bird, R. B.: Viscous heat effects in extrusion of molten plastics. J. Soc. Plastic Engrs.11, No. 7 (1955).

    Google Scholar 

  9. Chambre, P. L.: Laminar boundary layer with distributed heat sources or sinks. Appl. Sci. Res. Sec. A. V.6, 393 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  10. Moalem, D.: Steady state heat transfer with porous medium with temperature dependent heat generation. Int. J. Heat Mass. Transfer19, 529 (1976).

    Article  Google Scholar 

  11. Foraboschi, F. P., Federico, I. Di.: Heat transfer in laminar flow of non-Newtonian heat-generating fluids. Int. J. Heat Mass Transfer7, 315 (1964).

    Article  MATH  Google Scholar 

  12. Foraboschi, F. P., Cocchi, A.: Regime termico transitorio in fluidi in moto. Atti Accad. Sci. Bolongna Serie XI — Tomo X (1963).

  13. Gee, R. E., Lyon, J. B.: Nonisothermal flow of viscous non-Newtonian fluids. Industr. Engng. Chem.49, 956 (1957).

    Article  Google Scholar 

  14. Gill, W. N.: Heat transfer in laminar power flows with energy sources. J. Amer. Inst. Chem. Engrs.8, 137 (1962).

    Article  Google Scholar 

  15. Grosh, R. J., Cess, R. D.: Heat transfer to fluids with low Prandtl numbers for flow across plates and cylinders of various cross section. Trans. Amer. Soc. Mech. Engrs.80, 667 (1958).

    Google Scholar 

  16. Helmann, S. K., Habetler, G., Babrov, H.: Use of numerical analysis in the transient solution of two-dimensional heat transfer problem with natural and forced convection. Trans. Amer. Soc. Mech. Engrs.78, 1155 (1956).

    MathSciNet  Google Scholar 

  17. Inman, R. M.: Experimental study of temperature distribution in laminar tube flow of a fluid with internal heat generation. Int. J. Heat Mass Transfer5, 1053 (1962).

    Article  Google Scholar 

  18. Low, G. M.: Stability of compressible laminar boundary layer with internal heat sources or sinks. J. Aero. Sci.22, 329 (1955).

    Article  MATH  Google Scholar 

  19. Modejski, J.: Temperature distribution in channel flow with friction. Int. J. Heat Mass Transfer6, 49 (1963).

    Article  Google Scholar 

  20. Ostrach, S.: Laminar natural convection flow and heat transfer of fluids with and with-out heat sources in channels with constant wall temperatures. NACA TN 2863 (1952).

  21. Ostrach, S.: Combined natural- and forced-convection flow and heat transfer of fluids with and without heat sources in channels with linearly varying wall temperatures. NACA TN 3141 (1954).

  22. Pau Chang Lu: Combined free and forced convection heat generating laminar flow inside vertical pipes with circular sector cross section. Trans. ASME. J. Heat TransferC 83, 1 (1961).

    Google Scholar 

  23. Poppendiek, H. F.: Chem. Engng. Symp. Ser. 50, No. 11, 93 (1954).

    Google Scholar 

  24. Sastri, K. S.: Flow and heat transfer problems with and without heat sources. Doctoral Thesis, Indian Institute of Technology, Kharagpur, 1964.

    Google Scholar 

  25. Schechter, R. S., Wissler, E. H.: Heat transfer to Bingham plastics in laminar flow through circular tubes with internal heat generation. Nuclear Sci. Engng.6, 371 (1959).

    Article  Google Scholar 

  26. Sparrow, E. M., Siegel, R.: Laminar tube flow with arbitrary internal heat sources and wall heat transfer. Nuclear Sci. Engng.4, 239 (1958).

    Article  Google Scholar 

  27. Sparrow, E. M., Cess, R. D.: Temperature-dependent heat sources or sinks in a stagnation point flow. Appl. Sci. Res.A 10, 185 (1961).

    Article  MATH  Google Scholar 

  28. Tao, L. N.: Heat transfer of combined free and forced convection and sector tubes. Appl. Sci. Res.A 9, 357 (1960).

    Article  MATH  Google Scholar 

  29. Toor, H. L.: The energy equation for viscous flow. Industr. Engng. Chem.48, 922 (1956).

    Article  Google Scholar 

  30. Toor, H. L.: Heat transfer in forced convection with internal heat generation. J. Amer. Inst. Chem. Engrs.4, 319 (1958).

    Article  Google Scholar 

  31. Topper, L.: Heat transfer in cylinders with heat generation. J. Ame. Inst. Chem. Engrs.1, 463 (1955).

    Article  Google Scholar 

  32. Topper, L.: Forced heat convection in cylindrical channels: Some problems involving potential and parabolic velocity distribution. Chem. Engng. Sci.5, 13 (1956).

    Article  Google Scholar 

  33. Woodrow, J.: Free convection in heat generating fluid (laminar flow). Atomic Energy Res. Establ. Report E/R 1267 (1953).

  34. Woodrow, J.: Free convection in heat generating fluid. Negative temperature gradient. Atomic Energy Res. Establ. Report R/R 1981 (1956).

  35. The Earth's Mantle (Gaskell, T. F., ed.). New York: Academic Press. 1967.

    Google Scholar 

  36. Runcorn, S. K.: Convection currents in the Earth's Mantle. Nature195, 1248 (1962).

    Article  Google Scholar 

  37. Tozer, D. C.: Heat transfer and convection currents. Proc. R. Soc. (Lond.)A 258, 252 (1966).

    Google Scholar 

  38. Bethe, H. A.: Energy production in stars. Science161, 541 (1968).

    Article  Google Scholar 

  39. Vajravelu, K., Sastri, K. S.: Correction to ‘Free convection effect on the oscillatory flow past an infinite, vertical, porous plate with constant suction’. I. Proc. R. Soc. (Lond.)A 353, 221 (1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 18 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajravelu, K., Sastri, K.S. Laminar free convection heat transfer of a viscous incompressible heat generating fluid-flow past a vertical porous plate in the presence of free-stream oscillations. I. Acta Mechanica 31, 71–87 (1978). https://doi.org/10.1007/BF01261187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261187

Keywords

Navigation