Skip to main content
Log in

Vago-sympathetic modulation of gastric mechanoreceptors: Effect of distention and nutritional state

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Unit discharge evoked in gastric afferents by tactile stimulation of the frog's stomach was inhibited by electrical stimulation of gastric vagi and facilitated by cervical sympathetic stimulation. The inhibition or the facilitation of the evoked response depended on the mode and parameters of stimulation used. The tactually-evoked activity was also inhibited by gastric distention in well-fed animals (Type-I). This inhibition was released by gastric vagotomy, while cervical sympathectomy had no appreciable effect on the evoked inhibitory response.

In Type-II animals (animals kept on chronic food deprivation) the tactually-evoked activity was facilitated, rather than inhibited, by coupling tactile stimulation with gastric distention. This facilitation was abolished by cervical sympathectomy, but was not significantly affected by gastric vagotomy. It appears that the differential modulating control of gastric mechanoreceptor activity is biased by the state of energy balance and is brought about by a dual efferent control system mediated through autonomic nerves, gastric vagal fibers being inhibitory, and cervical sympathetic nerves being facilitatory to the tactile response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ash, R. W.: Stimuli in influencing the secretion of acid by the abomasum of sheep. J. Physiol. (Lond.)157, 185–207 (1961).

    Google Scholar 

  • Chernetski, K. E.: Cephalic sympathetic fibers in the frog. J. Comp. Neurol.122, 173–179 (1964 a).

    PubMed  Google Scholar 

  • Chernetski, K. E.: Sympathetic enhancement of peripheral sensory input in the frog. J. Neurophysiol.27, 493–515 (1964 b).

    PubMed  Google Scholar 

  • Chernigovsky, V. N.: The significance of interoceptive signals in the food behavior of animals. In: Brain and Behavior (Proc. of the Second Conference on Brain and Behavior, Los Angeles 1962), pp. 319–348. Washington: Am. Inst. Biol. Sc. 1963.

    Google Scholar 

  • Del Castillo, J., andB. Katz: Production of membrane potential changes in the frog's heart by inhibitory nerve impulses. Nature (Lond.)175, 1035 (1955).

    Google Scholar 

  • Desmedt, J. E., andP. Monoco: Mode of action of the efferent olivocochlear bundle on the inner ear. Nature (Lond.)192, 1263–1265 (1961).

    Google Scholar 

  • Eldred, E., H. N. Schmitzlein, andJ. Buchwald: Response of muscle spindles to stimulation of the sympathetic trunk. Exp. Neurol.2, 187–195 (1960).

    Google Scholar 

  • Granit, R.: Centrifugal and antidromic effects on ganglion cells of retina. J. Neurophysiol.18, 388–411 (1955).

    PubMed  Google Scholar 

  • Granit, R.: Muscular afferents and motor control (Proc. of the First Nobel Symposium, Sodergarn 1965), pp. 1–466. New York: J. Wiley. 1966.

    Google Scholar 

  • Grossman, M. I.: Integration of current views on regulation of hunger and appetite. Ann. N.Y. Acad. Sci.63, 76–91 (1955).

    PubMed  Google Scholar 

  • Hill, K. J.; Continuous gastric secretion in the ruminant. Quart. J. Exptl. Physiol.40, 32–39 (1955).

    Google Scholar 

  • Hsu, F. Y., andW. Yang: The actions of some autonomic drugs on the dog's small intestine. Proc. Chinese Physiol. Soc., Chengtu Branch.2, 107–112 (1945).

    Google Scholar 

  • Hukuhara, T., S. Nakayama, andR. Namba: Locality of receptors concerned with intestino-intestinal extrinsic and intestinal muscular intrinsic reflexes. Japan J. Physiol.10, 414–419 (1959).

    Google Scholar 

  • Hunt, C. C.: The effect of sympathetic stimulation on mammalian muscle spindles. J. Physiol. (Lond.)151, 332–341 (1960).

    Google Scholar 

  • Hunt, J. N.: Some properties of an alimentary osmoreceptor mechanism. J. Physiol. (Lond.)132, 267–288 (1956).

    Google Scholar 

  • Hunt, J. N., andI. MacDonald: The influence of volume on gastric emptying. J. Physiol. (Lond.)126, 459–474 (1954).

    Google Scholar 

  • Hutter, O. F., andW. R. Loewenstein: Nature of neuromuscular facilitation by sympathetic stimulation in the frog. J. Physiol. (Lond.)130, 559–571 (1955).

    Google Scholar 

  • Hutter, O. F., andW. Trautwein: Effect of vagal stimulation on the sinus venosus of the frog's heart. Nature (Lond.)176, 512–513 (1955).

    Google Scholar 

  • Iggo, A.,: Gastro-intestinal tension receptors with unmyelinated afferent fibers in the vagus of the cat. Quart. J. Exptl. Physiol.42, 130–143 (1957 a).

    Google Scholar 

  • Iggo, A.: Gastric mucosal chemoreceptors with vagal afferent fibers in the cat. Quart. J. Exptl. Physiol.42, 398–409 (1957 b).

    Google Scholar 

  • Jacobs, H. L.: Some physical, metabolic, and sensory components in the appetite for glucose. Am. J. Physiol.203, 1043–1954 (1962).

    PubMed  Google Scholar 

  • Jacobs, H. L., andK. N. Sharma: Energy balance and palatability: the effect of food deprivation on the intake of positively and negatively flavored solutions. The Physiol.7, 166 (1964).

    Google Scholar 

  • Jacobs, H. L., andK. N. Sharma: Taste versus calories: Sensory and metabolic signals in the control of food intake. Ann. N.Y. Acad. Sci.157, 1084–1125 (1969).

    PubMed  Google Scholar 

  • Jacobs, H. L., K. N. Sharma, andS. Dua-Sharma: Energy balance and feeding behavior: The effect of food deprivation on the intake of high salt diets. Proc. XXIII Int. Cong. Physiol. Sc. Tokyo, 1965, p. 226.

  • Janowitz, H. D.: Hunger and appetite. Am. J. Med.25, 327–332 (1958).

    PubMed  Google Scholar 

  • Kewenter, J.: The vagal control of the jejunal and ileal motility and blood flow. Acta. Physiol. Scand.65, Suppl. 251, 1–68 (1965).

    Google Scholar 

  • Kuffler, S. W., C. C. Hunt, andJ. P. Quilliam: Functions of meduilated small-nerve fibers in mammalian ventral roots: efferent muscle spindle innervation. J. Neurophysiol.14, 29–54 (1951).

    PubMed  Google Scholar 

  • Lemagnen, J.: Le control sensoriel dans la régulation de l'apport alimentaire. Extrait De “L'Obésite”. Expansion Scientifique, pp. 147–171, Paris 1963.

  • Loewenstein, W. R.: Modulation of cutaneous mechanoreceptors by sympathetic stimulation. J. Physiol. (Lond.)132, 40–60 (1956).

    Google Scholar 

  • Loewenstein, W. R. andR. Altamirano-Orrego: Enhancement of activity in a pacinian corpuscle by sympathomimetic agents. Nature (Lond.)178, 1292–1293 (1956).

    Google Scholar 

  • Martinson, J.: Studies on the efferent vagal control of the stomach. Acta. Physiol. Scand.65, Suppl. 255, 1–24 (1965).

    Google Scholar 

  • Martinson, J., andA. Muren: Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta. Physiol. Scand.57, 309–316 (1963).

    Google Scholar 

  • Matthews, P. B. C.: Muscle spindles and their motor control. Physiol. Rev.44, 219–288 (1964).

    PubMed  Google Scholar 

  • Morgane, P. J., andH. L. Jacobs: Hunger and satiety. In: World Review of Nutrition and Dietetics. (Bourne, G. H., ed.). Basel: Karger.10, 100–213 (1969).

    Google Scholar 

  • Niijima, A.: Afferent impulses in the gastric and oesophageal branch of the vagal nerve of toad. Physiol. Behav.2, 1–4 (1967).

    Google Scholar 

  • Paintal, A. S.: A study of gastric stretch receptors: their role in the peripheral mechanism of satiation of hunger and thirst. J. Physiol. (Lond.)126, 255–270 (1954).

    Google Scholar 

  • Sharma, K. N.: Receptor mechanisms in the alimentary tract: their excitation and functions. In: Handbook of Physiology. Alimentary Canal, Section 6, Vol. I, pp. 225–237 (Code, C. F., ed.). Washington: Am. Physiol. Soc. 1967 (a).

    Google Scholar 

  • Sharma, K. N.: Alimentary receptors and food intake regulation. In: Chemical Senses and Nutrition, pp. 281–291 (Kare, M., andO. Maller, eds.). Baltimore: Johns Hopkins Press. 1967 (b).

    Google Scholar 

  • Sharma, K. N., B. K. Anand, S. Dua, andB. Singh: Role of stomach in the regulation of activities of hypothalamic feeding centers. Am. J. Physiol.201, 593–598 (1961).

    PubMed  Google Scholar 

  • Sudakov, K. Y., andS. K. Rogacheva: The afferent and efferent activity of the fiber of the vagus nerve during fasting and after taking food. Fed. Proc. Trans. Suppl.22, 306–310 (1963).

    Google Scholar 

  • Thomas, J. E., andM. Y. Baldwin: Pathways and mechanisms of regulation of gastric motility. In: Handbook of Physiology. Alimentary Canal, Section 6, Vol. IV, pp. 1937–1968 (Code, C. F., ed.). Washington; Am. Physiol. Soc. 1968.

    Google Scholar 

  • Wayner, M. J.: Motor control functions of the lateral hypothalamus and adjunctive behavior. Physiol. Behav.5, 1319–1325 (1970). Author's address:Dr. K. N. Sharma, Chairman and Professor of Physiology, St. John's Medical College, Bangalore-34, India.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by PL-480 Grant NIH-01-015-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K.N., Jacobs, H.L., Gopal, V. et al. Vago-sympathetic modulation of gastric mechanoreceptors: Effect of distention and nutritional state. J. Neural Transmission 33, 113–154 (1972). https://doi.org/10.1007/BF01260900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01260900

Keywords

Navigation