Skip to main content
Log in

Fast parallel Preconditioned Conjugate Gradient algorithms for robot manipulator dynamics simulation

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper fast parallel Preconditioned Conjugate Gradient (PCG) algorithms for robot manipulator forward dynamics, or dynamic simulation, problem are presented. By exploiting the inherent structure of the forward dynamics problem, suitable preconditioners are devised to accelerate the iterations. Also, based on the choice of preconditioners, a modified dynamic formulation is used to speedup both serial and parallel computation of each iteration. The implementation of the parallel algorithms on two interconnected processor arrays is discussed and their computation and communication complexities are analyzed. The simulation results for a Puma Arm are presented to illustrate the effectiveness of the proposed preconditioners. With a faster convergence due to preconditioning and a faster computation of iterations due to parallelization, the developed parallel PCG algorithms represent the fastest alternative for parallel computation of the problem withO(n) processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fijany, A. and Bejczy, A. K., Techniques for parallel computation of mechanical manipulator dynamics. Part II: Forward dynamics, in C. T. Leondes (Ed.),Advances in Control and Dynamic Systems, Vol. 40: Advances in Robotic Systems Dynamics and Control, Academic Press, New York 1991, pp. 357–410.

    Google Scholar 

  2. Luh, J. Y. S., Walker, M. W. and Paul, R. P., On-line computation scheme for mechanical manipulator,Trans. ASME J. Dynam. Systems, Meas. Control,102 69–76 (1980).

    Google Scholar 

  3. Armstrong, W. W., Recursive solution to the equation of motion of ann-link manipulator,Proc. 5th World Congress Theory Mach. Mech. Vol. 2, Montreal, 1979.

  4. Featherstone, R., The calculation of robot dynamics using articulated-body inertia,Int. J. Robot. Res. 2(2), (1983).

  5. Rodriguez, G., Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics,IEEE Trans. Robot. Automat. RA-3(6), 624–639 (1987).

    Google Scholar 

  6. Rodriguez, G., Kreutz, K. and Jain, A., A spatial operator algebra for manipulator modeling and control,Int. J. Robot. Res. 10(4), 371–381 (1991).

    Google Scholar 

  7. Walker, M. W. and Orin, D. E., Efficient dynamic computer simulation of robotics mechanisms,Trans. ASME J. Dynam. Systems Meas. Control 104 205–211 (1982).

    Google Scholar 

  8. Fijany, A. and Scheid, R. E., Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics,Proc. NASA Conf. on Space Telerobotics, Pasadena, CA, Feb. 1989, pp. 329–340.

  9. Fijany, A. and Bejczy, A. K., An efficient algorithm for computation of the manipulator inertia matrix,J. Robot. Systems 7(1), 57–80 (1990).

    Google Scholar 

  10. Lee, C. S. G. and Chang, P. R., Efficient parallel algorithms for robot forward dynamics computation,IEEE Trans. System, Man Cybernet. SMC-18(2), 238–251 (1988).

    Google Scholar 

  11. Golub, G. H. and Van Loan, C. F.,Matrix Computation, John Hopkins Univ. Press, Baltimore, Maryland, 1983.

    Google Scholar 

  12. Concus, P., Golub, G. H. and O'Leary, D. P., A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, in J. R. Bunch and D. J. Rose (eds),Sparse Matrix Computation, Academic Press, New York, 1976.

    Google Scholar 

  13. Chen, J., The effects of gear reduction on robot dynamics,Proc. NASA Conf. on Space Telerobotics, Pasadena, CA, Feb. 1989.

  14. Bejczy, A. K., Robot arm dynamics and control, Jet Propulsion Lab., Tech. Report 33-669, Feb. 1974.

  15. Fijany, A. and Scheid, R. E., Fast serial and parallel conjugate gradient algorithms for rigid multibody dynamics, Jet Propulsion Laboratory Eng. Memorandum, EM 343–1196, Aug. 1990.

  16. Stone, H. S., Parallel processing with the perfect shuffle,IEEE Trans. Comput. C-20(2), 153–161 (1971).

    Google Scholar 

  17. Kogge, P. M., Parallel solution of recurrence problems,IBM J. Res. Develop. 18 138–148 (1974).

    Google Scholar 

  18. Stone, H. S., An efficient parallel algorithm for the solution of a tridiagonal linear system of equations,J. ACM 20(1), 27–38 (1973).

    Google Scholar 

  19. Ortega, J. M. and Voigt, R. G.,Solution of Partial Differential Equations on Vector and Parallel Computers, SIAM Pub., Philadelpha, 1985.

    Google Scholar 

  20. Hockney, R. W. and Jesshope, C. R.,Parallel Computers. Adam Hilger, New York, 1981.

    Google Scholar 

  21. Jamieson, L. H., Characterizing parallel algorithms, in L. H. Jamiesonet al. (eds),The Characteristics of Parallel Algorithms. MIT Press, Cambridge, Mass., 1987.

    Google Scholar 

  22. Kung, H. T., Why systolic architectures?,IEEE Comput. (Jan. 1982).

  23. Kung, S. Y., On supercomputing with systolic/wavefront array processors,Proc. IEEE,72(7), (1984).

  24. Lee, C. S. G. and Chang, P. R., Efficient parallel algorithm for robot inverse dynamics computations,IEEE Trans. Systems, Man. Cybernet. SMC-16(4), 532–542 (1986).

    Google Scholar 

  25. Fijany, A. and Bejczy, A. K., ASPARC: An algorithmically specialized parallel architecture for robotics computations, in A. Fijany and A. K. Bejczy (eds),Parallel Computation Systems for Robotics: Algorithms and Architectures, World Scientific, Singapore, 1992, pp. 95–141.

    Google Scholar 

  26. Schendel, U.,Introduction to Numerical Methods for Parallel Computers. Ellis Horwood, Chichester, 1987.

    Google Scholar 

  27. Kurdila, A. J. and Menon, R. G., Concurrent stabilization of range space formulation of multibody dynamics,Proc. 5th Annual NASA Workshop on Aerospace Computational Control, Santa Barbara, CA, Aug. 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fijany, A., Scheid, R.E. Fast parallel Preconditioned Conjugate Gradient algorithms for robot manipulator dynamics simulation. J Intell Robot Syst 9, 73–99 (1994). https://doi.org/10.1007/BF01258314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258314

Key words

Navigation