Skip to main content
Log in

L-Glutamic acid crystals grown from saturated aqueous solutions at 25° and 37° c

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

It is known that L-glutamic acid molecules in crystals occur in chain- and ring-like spatial configurations. This paper shows that the chain-form is favored when the crystals are grown from saturated aqueous solutions at room temperature (25°), the ring-form at body temperature (37°), with the preliminary requirement that the saturated solutions have been maintained at their respective constant temperatures for at least 24 hours prior to crystalization. Under identical growth conditions, the molecules of D-glutamic acid and a second dicarboxyl amino acid, aspartic acid, show no such change in spatial configuration as a function of temperature.

Zusammenfassung

Bekanntlich kommt kristallisierte L-Glutaminsäure in ringförmiger und kettenförmiger Molekülstruktur vor. Die eine oder die andere Struktur wird erhalten, je nachdem ob die Kristallisation aus einer gesättigten wäßrigen Lösung bei 25° oder 37° C erfolgt. Während bei 25° die kettenförmige Struktur erhalten wird, tritt bei 37° die ringförmige Struktur auf, vorausgesetzt, daß die Lösung mindestens für 24 Stunden bei der entsprechenden Temperatur gehalten wird. Solche Unterschiede konnten bei der chemisch sehr ähnlichen Asparaginsäure nicht festgestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Bernal, Z. Kristallographie78, 363 (1931).

    Google Scholar 

  2. S. Hirokawa, Acta Cryst.8, 637 (1955).

    Google Scholar 

  3. A. N. Winchell, “Optical Properties of Organic Compounds”. Second Edition. New York: Academic Press. 1954.

    Google Scholar 

  4. R. C. Weast (ed.), Handbook of Chemistry and Physics, 49th Edition. Cleveland: Chemical Rubber Co. 1969.

    Google Scholar 

  5. E. W. Washburn (ed.), International Critical Tables, Crystallography. Vol. I. New York: McGraw-Hill. 1930. p. 325.

    Google Scholar 

  6. G. B. Goe, Ph. D. Thesis, University of Colorado, Boulder, Colorado. 1969.

    Google Scholar 

  7. N. E. Dorsey, “Properties of Ordinary Water-substance”. New York: Reinhold. 1940.

    Google Scholar 

  8. L. W. Tilton and J. K. Taylor, J. Res. National Bureau of Standards20, 419 (1938).

    Google Scholar 

  9. E. W. Washburn (ed.), International Critical Tables. Vol. VII. New York: McGraw-Hill. 1930. p. 13.

    Google Scholar 

  10. R. A. Horne, in: A. F. Scott (ed.), “Survey in Progress in Chemistry”.4, 1 (1968).

  11. A. Lacourt and N. Delande, Mikrochim. Acta [Wien]1962, 48.

  12. A. Lacourt and N. Delande, Mikrochim. Acta [Wien]1964, 547.

  13. J. D. Bernal and R. H. Fowler, J. Chem. Phys.1, 515 (1933); L. Pauling, J. Amer. Chem. Society 57, 2680 (1935). Pauling uses the term “puckered” ring to describe his six-oxygen ring, but “chair” seems more common in recent literature; L. Pauling, „Die Natur der Chemischen Bindung“. Weinheim: Verlag Chemic. 1964. p. 432.

    Google Scholar 

  14. A. Dauvillier, “The Photo-Chemical Origin of Life”. New York: Academic Press. 1965. p. 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goe, G. L-Glutamic acid crystals grown from saturated aqueous solutions at 25° and 37° c. Mikrochim Acta 66, 119–134 (1976). https://doi.org/10.1007/BF01257102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257102

Keywords

Navigation