Skip to main content
Log in

Dopaminergic neuronal responses to a non-amphetamine CNS stimulant

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The present study compares the effects of d-amphetamine (d-AMP) and the potent non-amphetamine CNS stimulant, amfonelic acid (AFA), on the firing rate of single midbrain dopaminergic (DA) neurons and on neostriatal DA metabolism (dihydroxyphenylacetic acid—DOPAC). The results indicate that AFA, like d-AMP, reduces the firing rate of DA neurons, although unlike d-AMP, AFA does not cause a decrease in neostriatal DOPAC content and, in fact, enhances that produced by haloperidol (HALO). The AFA-induced decrease in firing rate, like d-AMP, is reversed by the DA receptor blocker HALO, but again unlike d-AMP, the decrease in firing rate is not prevented by catecholamine synthesis inhibition withα-methyl-para-tyrosine. Thus, both amphetamine and amfonelic acid have identical electrophysiological effects on DA neurons but act by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceto, M. D., Botton, I., Levitt, M., Martin, R., Bentley, H. C., Speight, P. T. Pharmacologic properties and mechanism of action of amfonelic acid. Europ. J. Pharmacol.10, 344–354 (1970).

    Google Scholar 

  • Aceto, M. D., Harris, L. S., Lesher, G. Y. Pharmacology of 7-benzyl-1-ethyl-1, 4-dihydro-4-oxo-1, 8-naphthyridine-3-carboxylic acid. Pharmacologist8, 222 (1977).

    Google Scholar 

  • Aceto, M. D., Harris, L. S., Lesher, G. Y., Pearl, J., Brown, T. G. Pharmacologic studies with 7-benzyl-1-ethyl-1, 4-dihydro-4-oxo-1, 8-naphthyridine-3-carboxylic acid. J. Pharmac. Exp. Ther.158, 286–293 (1967).

    Google Scholar 

  • Angrist, B., Sathananthan, G., Wilk, S., Gershon, S. Amphetamine psychosis: Behavioral and biochemical aspects. J. Psychiat. Res.11, 13–23 (1974).

    PubMed  Google Scholar 

  • Besson, J. M., Cheramy, A., Feltz, P., Glowinski, J. Release of newly-synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc. Nat. Acad. Sci.62, 741–748 (1969).

    PubMed  Google Scholar 

  • Bunney, B. S., Aghajanian, G. K. d-Amphetamine-induced inhibition of central dopaminergic neurons: Mediation by a striato-nigral feedback pathway. Science192, 391–393 (1976).

    PubMed  Google Scholar 

  • Bunney, B. S., Aghajanian, G. K., Roth, R. H. Comparison of effects of L-Dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons. Nature245, 123–125 (1973 a).

    Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmac. Exp. Ther.185, 560–571 (1973 b).

    Google Scholar 

  • Corrodi, H., Fuxe, K., Hökfelt, T. The effect of some psychoactive drugs on central monoamine neurons. Europ. J. Pharmacol.1, 363–368 (1967).

    Google Scholar 

  • Coyle, J. T., Snyder, S. H. Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J. Pharmac. Exp. Ther.170, 221–231 (1969).

    Google Scholar 

  • Gale, K., Guidotti, A., Costa, E. Dopamine-sensitive adenylate cyclase: Location in substantia nigra. Science195, 503–505 (1977).

    PubMed  Google Scholar 

  • Groves, P. M., Wilson, C. J., Young, S. J., Rebec, G. V. Self-inhibition by dopaminergic neurons. Science190, 522–529 (1975).

    PubMed  Google Scholar 

  • Groves, P. M., Young, S. J., Wilson, C. J. Self-inhibition by dopaminergic neurons: Disruption by (±)α-methyl-p-tyrosine pretreatment or anterior diencephalic lesions. Neuropharmacol.15, 755–762 (1976).

    Google Scholar 

  • Guyenet, P. G., Aghajanian, G. K. Antidromic activation of dopaminergic and other neurons in the nigrostriatal pathway. Neurosci. Abstracts3, 38 (1977).

    Google Scholar 

  • Juraska, J. M., Wilson, C. J., Groves, P. M. The substantia nigra of the rat: A golgi study. J. Comp. Neurol.172, 585–600 (1977).

    PubMed  Google Scholar 

  • König, J. F. R., Klippel, R. A. The rat brain: A stereotaxic atlas. Huntington, N.Y.: R. E. Krieger Publishing Co., Inc. 1963.

    Google Scholar 

  • Moore, K. E. The action of amphetamine on neurotransmitters: A brief review. Biol. Psychiat.12, 451–462 (1977).

    PubMed  Google Scholar 

  • Murphy, G. F., Robinson, D., Sharman, D. F. The effect of tropolone on the formation of 3, 4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the brain of the mouse. Brit. J. Pharmacol. Chemother.36, 107–115 (1969).

    Google Scholar 

  • Roth, R. H., Murrin, L. C., Walters, J. R. Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Europ. J. Pharmacol.36, 163–171 (1976).

    Google Scholar 

  • Scheel-Krüger, J. Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain. Europ. J. Pharmacol.14, 47–59 (1971).

    Google Scholar 

  • Shore, P. A. Actions of amfonelic acid and other non-amphetamine stimulants on the dopamine neuron. J. Pharm. Pharmacol.28, 855–857 (1976).

    PubMed  Google Scholar 

  • Snyder, S. H. Catecholamines in the brain as mediators of amphetamine psychosis. Arch. Gen. Psychiat.27, 169–179 (1972).

    PubMed  Google Scholar 

  • Spano, P. F., Trabucchi, M., DiChiara, G. Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from the corpus striatum. Science196, 1343–1345 (1977).

    PubMed  Google Scholar 

  • Sulser, F., Owens, M. L., Norvich, M. R., Dingell, J. V. The relative role of storage and synthesis of brain norepinephrine in psychomotor stimulation evoked by amphetamine or by desipramine and tetrabenazine. Psychopharmacologia12, 322–332 (1968).

    PubMed  Google Scholar 

  • Thomas, R. C., Wilson, V. J. Precise localization of Renshaw cells with a new marking technique. Nature (London)206, 211–214 (1965).

    Google Scholar 

  • Weissman, A., Koe, B. K., Tenen, S. S. Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol.151, 329–352 (1966).

    Google Scholar 

  • Wilson, C. J., Groves, P. M., Fifková, E. Monoaminergic synapses, including dendro-dendritic synapses in the rat substantia nigra. Exp. Brain Res.30, 161–174 (1977).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

German, D.C., Harden, H., Sanghera, M.K. et al. Dopaminergic neuronal responses to a non-amphetamine CNS stimulant. J. Neural Transmission 44, 39–49 (1979). https://doi.org/10.1007/BF01252700

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01252700

Keywords

Navigation