Skip to main content
Log in

The role of monoamines for the central effects of Baclofen on behavior of rats

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Male albino rats given a bilateral injection of Baclofen (Lioresal®) (12μg/rat) in the cerebral ventricles showed a behavioral syndrome of activation+ataxia, paddling, tail-pinch hyperresponse and anesthesia. The phase of activation+ataxia was reduced by pretreatment of rats with H 44/68, FLA 63, reserpine, pimozide, phenoxybenzamine, oxypertine or chlorpromazine. The phase of paddling was reduced by pretreatment with FLA 63, reserpine, phenoxybenzamine, oxypertine, chlorpromazine, pimozide+phenoxybenzamine or apomorphine, while administration of clonidine instead of Baclofen caused paddling in non-pretreated rats. The phase of tail-pinch hyperresponse was reduced by reserpine, oxypertine, chlorpromazine or pimozide+phenoxybenzamine, while none of the pretreatments affected Baclofen-induced anesthesia. Drugs which affect mainly tryptaminergic or GABA-ergic functions failed to affect Baclofen-induced behaviors consistently. The findings suggest that dopaminergic and noradrenergic functions play a role in the central effects of Baclofen on behavior of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Wachtel, H. Biochemical effects of baclofen (β-para-chlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain. Acta Pharmacol. Toxicol.40, 310–320 (1977).

    Google Scholar 

  • Biswas, B., Carlsson, A. The effect of intracerebroventricular administered GABA on brain monoamine metabolism. Naunyn-Schmiedeberg's Arch. Pharmacol.299, 41–46 (1977).

    Google Scholar 

  • Brogden, R. N., Speight, T. M., Avery, G. S. Baclofen (“Lioresal”-CIBA): An independent preliminary report. Curr. Ther.15, 51–61 (1974).

    Google Scholar 

  • Curtis, D. R., Game, C. J. A., Johnston, G. A. R., McCulloch, R. M. Central effects ofβ-(p-chlorophenyl)-γ-aminobutyric acid. Brain Res.70, 493 to 499 (1974).

    Google Scholar 

  • Davies, J., Watkins, J. C. The action ofβ-phenyl-GABA derivatives on neurones in the cat cerebral cortex. Brain Res.70, 501–505 (1974).

    PubMed  Google Scholar 

  • Ernst, A. M. Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia10, 316–323 (1967).

    PubMed  Google Scholar 

  • Fotherby, K. J., Morrish, N. J., Ryall, R. W. Is Lioresal (Baclofen) an antagonist of substance P? Brain Res.113, 210–213 (1976).

    PubMed  Google Scholar 

  • Fuxe, K., Hökfelt, T., Ljungdahl, Å., Agnati, L., Johansson, O., Perez de la Mora, M. Evidence for an inhibitory GABA-ergic control of the mesolimbic dopamine neurons: Possibility of improving treatment of schizophrenia by combined treatment with neuroleptics and GABA-ergic drugs. Med. Biol.53, 177–183 (1975).

    PubMed  Google Scholar 

  • Gianutsos, G., Moore, K. E. Increase in mouse brain dopamine content by baclofen: Effects of apomorphine and neuroleptics. Psychopharmacology52, 217–221 (1977).

    PubMed  Google Scholar 

  • Hudgson, P., Weightman, D. Baclofen in the treatment of spasticity. Br. Med. J.4, 15–17 (1971).

    PubMed  Google Scholar 

  • Knutsson, E., Lindblom, U., Martensson, A. Plasma and cerebrospinal fluid levels of baclofen (Lioresal®) at optimal therapeutic responses in spastic paresis. J. Neurol. Sci.23, 473–484 (1974).

    PubMed  Google Scholar 

  • Korsgaard, S. Baclofen (Lioresal) in the treatment of neuroleptic-induced tardive dyskinesia. Acta Psychiat. Scand.54, 17–24 (1976).

    PubMed  Google Scholar 

  • Nistri, A. Further investigations into the effects of Baclofen (Lioresal) on the isolated spinal cord. Experientia31, 1066–1068 (1975).

    PubMed  Google Scholar 

  • Paulson, G. W. Overdose of Lioresal. Neurology26, 1105–1106 (1976).

    PubMed  Google Scholar 

  • Randrup, A., Munkvad, I. Behavioural stereotypies induced by pharmacological agents. Pharmakopsychiat.1, 18–26 (1968).

    Google Scholar 

  • Saito, K., Konishi, S., Otsuka, M. Antagonism between Lioresal and substance P in rat spinal cord. Brain Res.97, 177–180 (1975).

    PubMed  Google Scholar 

  • Scheel-Krüger, J., Arnt, J., Magelund, G. Behavioural stimulation induced by muscimol and other GABA agonists injected into the substantia nigra. Neuroscience Lett.4, 351–356 (1977).

    Google Scholar 

  • Siegel, S. Nonparametric statistics for the behavioural sciences. New York: McGraw-Hill. 1956.

    Google Scholar 

  • Smith, D. F., Smith, H. B. The effect of prolonged lithium administration on activity, reactivity and endurance in the rat. Psychopharmacologia30, 83–88 (1973).

    PubMed  Google Scholar 

  • Waldmeier, P. C., Fehr, B. Effects of baclofen and γ-hydroxybutyrate on rat striatal and mesolimbic 5-HT metabolism. Eur. J. Pharmacol.49, 177–184 (1978).

    PubMed  Google Scholar 

  • Waldmeier, P. C., Maitre, L. Effects of baclofen on dopamine metabolism and interaction with neuroleptic effects. Eur. J. Pharmacol.47, 191 to 200 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.F., Vestergaard, P. The role of monoamines for the central effects of Baclofen on behavior of rats. J. Neural Transmission 46, 215–223 (1979). https://doi.org/10.1007/BF01250787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250787

Keywords

Navigation