Skip to main content
Log in

Dopa accumulation is a measure of dopamine synthesis in the median eminence and posterior pituitary

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

A radioenzymatic assay was employed to measure the accumulation of DOPA in a variety of rat brain tissues 30 min after the administration of a decarboxylase inhibitor in order to estimate the activity of dopamine (DA) nerves which terminate in these regions. In the median eminence and posterior pituitary the accumulation of DOPA appears to occur primarily in DA nerves since: (1) the rate of synthesis of norepinephrine (NE), as estimated from theα-methyltyrosine-induced decline of catecholamines, accounts for less than 10% of total catecholamine synthesis in these two brain regions; and (2) the accumulation of DOPA is not significantly altered when the NE concentrations in these regions are reduced to 40–50% of control by prior intraventricular injections of 6-hydroxydopamine. These results suggest that the accumulation of DOPA in the median eminence and the posterior pituitary can be used to estimate the activity of tuberoinfundibular and tuberohypophyseal DA nerves, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, R. H., Demarest, K. T., Moore, K. E.: Characteristics of catechol-aminergic nerves in the neurointermediate lobe of the rat pituitary. Soc. Neurosci. Abst.5 (in press, 1979).

  • Andén, N.-E., Grabowska-Andén, M. Morphine-induced changes in striatal dopamine mechanisms not evoked from the dopamine nerve terminals. J. Pharm. Pharmacol.30, 732–733 (1978).

    PubMed  Google Scholar 

  • Brownstein, M., Saavedra, J. M., Palkovits, M. Norepinephrine and dopamine in the limbic system of the rat. Brain Res.79, 431–436 (1974).

    PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M. In vivo measurements of tryptophan and tyrosine hydroxylase activities in mouse brain. J. Neural Transm.34, 79–91 (1973).

    PubMed  Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., Atack, C. V. Regulation of monoamine metabolism in the central nervous system. Pharmacol. Rev.24, 371–384 (1972).

    Google Scholar 

  • Cuello, A. C., Horn, A. S., Mackay, A. V. P., Iversen, L. L. Catecholamines in the median eminence: New evidence for a major noradrenergic input. Nature243, 465–467 (1973).

    PubMed  Google Scholar 

  • Demarest, K. T., Moore, K. E.: Accumulation of dihydroxyphenylalanine in the median eminence: An index of tuberoinfundibular dopaminergic nerve activity. Endocrinology (submitted 1979).

  • Fuxe, T., Hökfelt, T., Nilsson, O. Castration, sex hormones and tuberoinfundibular dopamine neurons. Neuroendocrinology5, 107–120 (1969).

    PubMed  Google Scholar 

  • Fuxe, K., Agnati, L., Tsuchiya, L., Hökfelt, T., Johansson, O., Johnsson, G., Lidbrink, P., Löfström, A., Ungerstedt, U. Effect of antipsychotic drugs on central catecholamine neurons of rat brain. In: Antipsychotic Drugs, Pharmacodynamics and Pharmacokinetics (Sedvall, G., ed.), pp. 117 to 132. New York: Pergamon Press. 1975.

    Google Scholar 

  • Glowinski, J., Iversen, L. L. Regional studies of catecholamines in the rat brain. I. The disposition of3H-norepinephrine,3H-dopamine and3H-DOPA in various regions of the brain. J. Neurochem.13, 655–669 (1966).

    PubMed  Google Scholar 

  • Gudelsky, G. A., Annunziatio, L., Moore, K. E. Increase in dopamine content of the rat median eminence after long-term ovariectomy and its reversal by estrogen replacement. Endocrinology101, 1894–1897 (1977).

    PubMed  Google Scholar 

  • Hefti, F., Lichtensteiger, W. An enzymatic-isotopic method for DOPA and its use for the measurement of dopamine synthesis in rat substantia nigra. J. Neurochem.27, 647–649 (1976).

    PubMed  Google Scholar 

  • Holzbauer, M., Sharman, D. F., Godden, U. Observations on the function of the dopaminergic nerves innervating the pituitary gland. Neuroscience3, 1251–1262 (1978).

    PubMed  Google Scholar 

  • Horn, A. S., Cuello, A. C., Miller, R. J. Dopamine in the mesolimbic system of the rat brain: Endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity. J. Neurochem.22, 264–270 (1974).

    Google Scholar 

  • Kizer, J. S., Palkovits, M., Zivin, J., Brownstein, M. The effect of endocrinological manipulations on tyrosine hydroxylase and dopamine-β-hydroxylase activities in individual hypothalamic nuclei of the adult male rat. Endocrinology95, 799–812 (1974).

    PubMed  Google Scholar 

  • Kizer, J. S., Humm, J., Nicholson, G., Greenley, G., Youngblood, W. The effect of castration, thyroidectomy and haloperidol upon the turnover rates of dopamine and norepinephrine and the kinetic properties of tyrosine hydroxylase in discrete hypothalamic nuclei of the male rat. Brain Res.146, 95–108 (1978).

    PubMed  Google Scholar 

  • Lindvall, O., Björklund, A. Organization of catecholamine neurons in the rat central nervous system. In: Handbook of Psychopharmacology, Vol. 9 (Iversen, L. L., Iversen, S. D., Snyder, S. H., eds.), pp. 139–231. New York: Plenum Press. 1978.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).

    PubMed  Google Scholar 

  • Moore, K. E., Phillipson, O. T. Effects of dexamethasone on phenylethanol-amine N-methyltransferase and adrenaline in brain and superior cervical ganglia of adult and neonatal rats. J. Neurochem.25, 289–294 (1975).

    PubMed  Google Scholar 

  • Moore, K. E., Annunziato, L., Gudelsky, G. A.: Studies on tubero-infundibular dopamine neurons. In: Dopamine, Advances in Biochemical Psychopharmacology (Roberts, P. J., Woodruff, G. N., Iversen, L. L., eds.), pp. 193–204. 1978.

  • Pellegrino, L. J., Cushman, A. J. A stereotaxic atlas of the rat brain, ed. 2. New York: Appleton-Century-Crofts. 1968.

    Google Scholar 

  • Roth, R. H., Murrin, L. C., Walters, J. R. Central dopaminergic neurons: Effects of alterations in impulse flow on the accumulation of dihydroxy-phenylacetic acid. Eur. J. Pharmacol.36, 163–172 (1976).

    PubMed  Google Scholar 

  • Saavedra, J. M., Palkovitz, M., Kizer, J. S., Brownstein, M., Zivin, J. A. Distribution of biogenic amines and related enzymes in the rat pituitary gland. J. Neurodiem.25, 257–260 (1975).

    Google Scholar 

  • Selmanoff, M. K., Pramik-Holdaway, M. J., Weiner, R. I. Concentrations of dopamine and norepinephrine in discrete hypothalamic nuclei during the rat estrous cycle. Endocrinology99, 326–329 (1976).

    PubMed  Google Scholar 

  • Sokal, R. R., Rohlf, F. J. Biometry, ed. 2. San Francisco: Freeman. 1969.

    Google Scholar 

  • Umezu, K., Moore, K. E. Effects of drugs on regional brain concentrations of dopamine and dihydroxyphenylacetic acid. J. Pharmacol. Exp. Ther.208, 49–56 (1979).

    PubMed  Google Scholar 

  • Walters, J. R., Roth, R. H. Dopaminergic neurons: Drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Pharmacol. Exp. Ther.191, 82–91 (1974).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demarest, K.T., Alper, R.H. & Moore, K.E. Dopa accumulation is a measure of dopamine synthesis in the median eminence and posterior pituitary. J. Neural Transmission 46, 183–193 (1979). https://doi.org/10.1007/BF01250784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250784

Keywords

Navigation